IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i1p200-214.html
   My bibliography  Save this article

Estimating the Probability of Human Error by Incorporating Component Failure Data from User‐Induced Defects in the Development of Complex Electrical Systems

Author

Listed:
  • Peter J. Majewicz
  • Paul Blessner
  • Bill Olson
  • Timothy Blackburn

Abstract

This article proposes a methodology for incorporating electrical component failure data into the human error assessment and reduction technique (HEART) for estimating human error probabilities (HEPs). The existing HEART method contains factors known as error‐producing conditions (EPCs) that adjust a generic HEP to a more specific situation being assessed. The selection and proportioning of these EPCs are at the discretion of an assessor, and are therefore subject to the assessor's experience and potential bias. This dependence on expert opinion is prevalent in similar HEP assessment techniques used in numerous industrial areas. The proposed method incorporates factors based on observed trends in electrical component failures to produce a revised HEP that can trigger risk mitigation actions more effectively based on the presence of component categories or other hazardous conditions that have a history of failure due to human error. The data used for the additional factors are a result of an analysis of failures of electronic components experienced during system integration and testing at NASA Goddard Space Flight Center. The analysis includes the determination of root failure mechanisms and trend analysis. The major causes of these defects were attributed to electrostatic damage, electrical overstress, mechanical overstress, or thermal overstress. These factors representing user‐induced defects are quantified and incorporated into specific hardware factors based on the system's electrical parts list. This proposed methodology is demonstrated with an example comparing the original HEART method and the proposed modified technique.

Suggested Citation

  • Peter J. Majewicz & Paul Blessner & Bill Olson & Timothy Blackburn, 2020. "Estimating the Probability of Human Error by Incorporating Component Failure Data from User‐Induced Defects in the Development of Complex Electrical Systems," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 200-214, January.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:1:p:200-214
    DOI: 10.1111/risa.12798
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12798
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fan‐Jang Yu & Sheue‐Ling Hwang & Yu‐Hao Huang, 1999. "Task Analysis for Industrial Work Process from Aspects of Human Reliability and System Safety," Risk Analysis, John Wiley & Sons, vol. 19(3), pages 401-415, June.
    2. Jae W. Kim & Wondea Jung & Jaejoo Ha, 2004. "AGAPE‐ET: A Methodology for Human Error Analysis of Emergency Tasks," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1261-1277, October.
    3. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    4. Konstandinidou, Myrto & Nivolianitou, Zoe & Kiranoudis, Chris & Markatos, Nikolaos, 2006. "A fuzzy modeling application of CREAM methodology for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 706-716.
    5. Luca Podofillini & Vinh Dang & Enrico Zio & Piero Baraldi & Massimo Librizzi, 2010. "Using Expert Models in Human Reliability Analysis—A Dependence Assessment Method Based on Fuzzy Logic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1277-1297, August.
    6. Shuen‐Tai Ung & Wei‐Min Shen, 2011. "A Novel Human Error Probability Assessment Using Fuzzy Modeling," Risk Analysis, John Wiley & Sons, vol. 31(5), pages 745-757, May.
    7. Fabio Lopez & Chiara Di Bartolo & Tommaso Piazza & Antonino Passannanti & Jörg C. Gerlach & Bruno Gridelli & Fabio Triolo, 2010. "A Quality Risk Management Model Approach for Cell Therapy Manufacturing," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1857-1871, December.
    8. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Hu-Chen & Wang, Jing-Hui & Zhang, Ling & Zhang, Qi-Zhen, 2022. "New success likelihood index model for large group human reliability analysis considering noncooperative behaviors and social network," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin, 2020. "Performance shaping factors dependence assessment through moderating and mediating effect analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    5. Mojgan Aalipour & Yonas Zewdu Ayele & Abbas Barabadi, 2016. "Human reliability assessment (HRA) in maintenance of production process: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(2), pages 229-238, June.
    6. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    7. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    9. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Marzio Marseguerra & Enrico Zio & Massimo Librizzi, 2007. "Human Reliability Analysis by Fuzzy “CREAM”," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 137-154, February.
    11. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    12. Ogbeide, Henry & Thomson, Mary Elizabeth & Gonul, Mustafa Sinan & Pollock, Andrew Castairs & Bhowmick, Sanjay & Bello, Abdullahi Usman, 2023. "The anti-money laundering risk assessment: A probabilistic approach," Journal of Business Research, Elsevier, vol. 162(C).
    13. Rajesh Kumar Singh & Ayush Gupta, 2020. "Framework for sustainable maintenance system: ISM–fuzzy MICMAC and TOPSIS approach," Annals of Operations Research, Springer, vol. 290(1), pages 643-676, July.
    14. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Carole Duval & Geoffrey Fallet-Fidry & Benoît Iung & Philippe Weber & Eric Levrat, 2012. "A Bayesian network-based integrated risk analysis approach for industrial systems: application to heat sink system and prospects development," Journal of Risk and Reliability, , vol. 226(5), pages 488-507, October.
    16. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    18. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    19. Luca Podofillini & Vinh Dang & Enrico Zio & Piero Baraldi & Massimo Librizzi, 2010. "Using Expert Models in Human Reliability Analysis—A Dependence Assessment Method Based on Fuzzy Logic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1277-1297, August.
    20. Liu, Hu-Chen & Wang, Jing-Hui & Zhang, Ling & Zhang, Qi-Zhen, 2022. "New success likelihood index model for large group human reliability analysis considering noncooperative behaviors and social network," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:1:p:200-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.