IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305354.html
   My bibliography  Save this article

Performance shaping factors dependence assessment through moderating and mediating effect analysis

Author

Listed:
  • Wang, Lijing
  • Wang, Yanlong
  • Chen, Yingchun
  • Pan, Xing
  • Zhang, Wenjin

Abstract

Dependence assessment is an important task in human reliability analysis (HRA). The dependences in HRA include three categories, dependences between human failure events (HFEs) (CAT1), dependences between HEP and performance shaping factors (PSFs) (CAT2), and dependences between PSFs (CAT3). Among them, CAT3 dependences have not been well studied due to their complexity. According to their function mode, PSF dependences can be further distinguished as mediating effect and moderating effect. Taking the inter-dependences between PSFs for civil flight crew as examples, this paper proposes an empirical approach to assess dependences between PSFs. Firstly, 10 PSF categories including 59 lower level PSFs were identified for civil flight crew through literature review and focus groups screening. Then a 432-pilot-joined survey was carried out to collect pilots’ opinions on PSF influences on performance. After that, moderating and mediating effect analysis methods were used to identify the existence and type of PSF dependences. The results show that mediating effect is much more common than moderating effect between PSFs. The method proposed in this paper can provide a deeper insight to PSF dependences, and its results serve as important inputs to other HRA researches such as the construction of complex Bayesian networks for HRA.

Suggested Citation

  • Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin, 2020. "Performance shaping factors dependence assessment through moderating and mediating effect analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305354
    DOI: 10.1016/j.ress.2020.107034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Musharraf, Mashrura & Smith, Jennifer & Khan, Faisal & Veitch, Brian & MacKinnon, Scott, 2016. "Assessing offshore emergency evacuation behavior in a virtual environment using a Bayesian Network approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 28-37.
    2. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    3. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1014-1040.
    4. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    5. Luca Podofillini & Vinh Dang & Enrico Zio & Piero Baraldi & Massimo Librizzi, 2010. "Using Expert Models in Human Reliability Analysis—A Dependence Assessment Method Based on Fuzzy Logic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1277-1297, August.
    6. Liu, Hu-Chen & Li, Zhaojun & Zhang, Jian-Qing & You, Xiao-Yue, 2018. "A large group decision making approach for dependence assessment in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 135-144.
    7. Groth, Katrina M. & Mosleh, Ali, 2012. "A data-informed PIF hierarchy for model-based Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 154-174.
    8. Jiawei Zhou & Yanjie Yang & Xiaohui Qiu & Xiuxian Yang & Hui Pan & Bo Ban & Zhengxue Qiao & Lin Wang & Wenbo Wang, 2016. "Relationship between Anxiety and Burnout among Chinese Physicians: A Moderated Mediation Model," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    9. De Ambroggi, Massimiliano & Trucco, Paolo, 2011. "Modelling and assessment of dependent performance shaping factors through Analytic Network Process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 849-860.
    10. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    11. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    12. Quigley, John & Hardman, Gavin & Bedford, Tim & Walls, Lesley, 2011. "Merging expert and empirical data for rare event frequency estimation: Pool homogenisation for empirical Bayes models," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 687-695.
    13. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dina Guglielmi & Alessio Paolucci & Valerio Cozzani & Marco Giovanni Mariani & Luca Pietrantoni & Federico Fraboni, 2022. "Integrating Human Barriers in Human Reliability Analysis: A New Model for the Energy Sector," IJERPH, MDPI, vol. 19(5), pages 1-17, February.
    2. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Susanto, Stefanny Magdalena, 2020. "Influence of contingency theory, moderating variable, and mediating effect on firm performance," OSF Preprints kv48g, Center for Open Science.
    4. Winatha, Arvin, 2020. "Konsep Contingency serta Peranan Moderating dan Mediating Variable dalam FP," OSF Preprints 83j5r, Center for Open Science.
    5. amien, haqqan, 2020. "Efek Mediasi Terhadap Kepuasan Kinerja Karyawan Dengan Hubungan Kepemimpinan Yang Efektif Dalam Situasi Tertentu," OSF Preprints zytvj, Center for Open Science.
    6. Xiaoyan Yi & Qinqi Zou & Zewei Zhang & Sheng-Han-Erin Chang, 2023. "What Motivates Greenhouse Vegetable Farmers to Adapt Organic-Substitute-Chemical-Fertilizer (OSCF)? An Empirical Study from Shandong, China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    7. Lita, Amanda Dara, 2020. "Penjabaran Teori Kontingensi dan Pengaruh Suatu Moderating Variable Terhadap Suatu Model Serta Peran Mediating Effect Dalam Suatu Perusahaan," OSF Preprints y48kz, Center for Open Science.
    8. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zio, Enrico & Yuan, Chengwei & Wang, Taorui & Jiang, Jianjun, 2022. "A Bayesian belief network framework for nuclear power plant human reliability analysis accounting for dependencies among performance shaping factors," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Kim, Yochan & Kim, Jaewhan & Park, Jinkyun, 2023. "A data-informed dependency assessment of human reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Putri, Jenifer, 2020. "Contingency Theory, Moderating Variable and Mediating Effect in The Economic Sphere," OSF Preprints mnb45, Center for Open Science.
    11. Si, Hongyun & Su, Yangyue & Wu, Guangdong & Liu, Bingsheng & Zhao, Xianbo, 2020. "Understanding bike-sharing users’ willingness to participate in repairing damaged bicycles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 203-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    2. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zio, Enrico & Yuan, Chengwei & Wang, Taorui & Jiang, Jianjun, 2022. "A Bayesian belief network framework for nuclear power plant human reliability analysis accounting for dependencies among performance shaping factors," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Shirley, Rachel Benish & Smidts, Carol & Zhao, Yunfei, 2020. "Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simul," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    5. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    11. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    16. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    18. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    20. Kim, Yochan & Park, Jinkyun, 2019. "Incorporating prior knowledge with simulation data to estimate PSF multipliers using Bayesian logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 210-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.