IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v12y1992i4p513-523.html
   My bibliography  Save this article

Bayesian Methods for Model Uncertainty Analysis with Application to Future Sea Level Rise

Author

Listed:
  • Anand Patwardhan
  • Mitchell J. Small

Abstract

This paper addresses the use of data for identifying and characterizing uncertainties in model parameters and predictions. The Bayesian Monte Carlo method is formally presented and elaborated, and applied to the analysis of the uncertainty in a predictive model for global mean sea level change. The method uses observations of output variables, made with an assumed error structure, to determine a posterior distribution of model outputs. This is used to derive a posterior distribution for the model parameters. Results demonstrate the resolution of the uncertainty that is obtained as a result of the Bayesian analysis and also indicate the key contributors to the uncertainty in the sea level rise model. While the technique is illustrated with a simple, preliminary model, the analysis provides an iterative framework for model refinement. The methodology developed in this paper provides a mechanism for the incorporation of ongoing data collection and research in decision‐making for problems involving uncertain environmental change.

Suggested Citation

  • Anand Patwardhan & Mitchell J. Small, 1992. "Bayesian Methods for Model Uncertainty Analysis with Application to Future Sea Level Rise," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 513-523, December.
  • Handle: RePEc:wly:riskan:v:12:y:1992:i:4:p:513-523
    DOI: 10.1111/j.1539-6924.1992.tb00708.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1992.tb00708.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1992.tb00708.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. E. Vesely & D. M. Rasmuson, 1984. "Uncertainties in Nuclear Probabilistic Risk Analyses," Risk Analysis, John Wiley & Sons, vol. 4(4), pages 313-322, December.
    2. David C. Cox & Paul Baybutt, 1981. "Methods for Uncertainty Analysis: A Comparative Survey," Risk Analysis, John Wiley & Sons, vol. 1(4), pages 251-258, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. Nicky J. Welton & A. E. Ades, 2005. "Estimation of Markov Chain Transition Probabilities and Rates from Fully and Partially Observed Data: Uncertainty Propagation, Evidence Synthesis, and Model Calibration," Medical Decision Making, , vol. 25(6), pages 633-645, November.
    3. Isabelle Albert & Emmanuel Grenier & Jean‐Baptiste Denis & Judith Rousseau, 2008. "Quantitative Risk Assessment from Farm to Fork and Beyond: A Global Bayesian Approach Concerning Food‐Borne Diseases," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 557-571, April.
    4. Michela Catenacci & Carlo Giupponi, 2010. "Potentials and Limits of Bayesian Networks to Deal with Uncertainty in the Assessment of Climate Change Adaptation Policies," Working Papers 2010.7, Fondazione Eni Enrico Mattei.
    5. Michael S. Williams & Eric D. Ebel & David Vose, 2011. "Framework for Microbial Food‐Safety Risk Assessments Amenable to Bayesian Modeling," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 548-565, April.
    6. Maxine E. Dakins & John E. Toll & Mitchell J. Small & Kevin P. Brand, 1996. "Risk‐Based Environmental Remediation: Bayesian Monte Carlo Analysis and the Expected Value of Sample Information," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 67-79, February.
    7. Tschang, F. Ted & Dowlatabadi, Hadi, 1995. "A Bayesian technique for refining the uncertainty in global energy model forecasts," International Journal of Forecasting, Elsevier, vol. 11(1), pages 43-61, March.
    8. Kevin P. Brand & Mitchell J. Small, 1995. "Updating Uncertainty in an Integrated Risk Assessment: Conceptual Framework and Methods," Risk Analysis, John Wiley & Sons, vol. 15(6), pages 719-729, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. James K. Hammitt, 1990. "Subjective‐Probability‐Based Scenarios for Uncertain Input Parameters: Stratospheric Ozone Depletion," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 93-102, March.
    3. Vincent T. Covello, 1987. "Decision Analysis and Risk Management Decision Making: Issues and Methods," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 131-139, June.
    4. Fritz A. Seiler, 1987. "Error Propagation for Large Errors," Risk Analysis, John Wiley & Sons, vol. 7(4), pages 509-518, December.
    5. John H. Miller, 1996. "Active Nonlinear Tests (ANTs) of Complex Simulation Models," Working Papers 96-03-011, Santa Fe Institute.
    6. Gradov, Dmitry Vladimirovich & Yusuf, Yusuf Oluwatoki & Ohjainen, Jussi & Suuronen, Jarkko & Eskola, Roope & Roininen, Lassi & Koiranen, Tuomas, 2022. "Modelling of a continuous veneer drying unit of industrial scale and model-based ANOVA of the energy efficiency," Energy, Elsevier, vol. 244(PA).
    7. John H. Miller, 1998. "Active Nonlinear Tests (ANTs) of Complex Simulation Models," Management Science, INFORMS, vol. 44(6), pages 820-830, June.
    8. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    9. Brent Finley & Dennis Paustenbach, 1994. "The Benefits of Probabilistic Exposure Assessment: Three Case Studies Involving Contaminated Air, Water, and Soil," Risk Analysis, John Wiley & Sons, vol. 14(1), pages 53-73, February.
    10. Jon C. Helton, 1994. "Treatment of Uncertainty in Performance Assessments for Complex Systems," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 483-511, August.
    11. Andrew E. Smith & P. Barry Ryan & John S. Evans, 1992. "The Effect of Neglecting Correlations When Propagating Uncertainty and Estimating the Population Distribution of Risk," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 467-474, December.
    12. Fritz A. Seiler & Joseph L. Alvarez, 1996. "On the Selection of Distributions for Stochastic Variables," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 5-18, February.
    13. Ludovic Gaudard & Franco Romerio, 2020. "A Conceptual Framework to Classify and Manage Risk, Uncertainty and Ambiguity: An Application to Energy Policy," Energies, MDPI, vol. 13(6), pages 1-22, March.
    14. Benjamin A. Lyons & Heather Akin & Natalie Jomini Stroud, 2020. "Proximity (Mis)perception: Public Awareness of Nuclear, Refinery, and Fracking Sites," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 385-398, February.
    15. Max Henrion & M. Granger Morgan, 1985. "A Computer Aid for Risk and Other Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 5(3), pages 195-208, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:12:y:1992:i:4:p:513-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.