IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v14y1994i4p483-511.html
   My bibliography  Save this article

Treatment of Uncertainty in Performance Assessments for Complex Systems

Author

Listed:
  • Jon C. Helton

Abstract

When viewed at a high level, performance assessments (PAs) for complex systems involve two types of uncertainty: stochastic uncertainty, which arises because the system under study can behave in many different ways, and subjective uncertainty, which arises from a lack of knowledge about quantities required within the computational implementation of the PA. Stochastic uncertainty is typically incorporated into a PA with an experimental design based on importance sampling and leads to the final results of the PA being expressed as a complementary cumulative distribution function (CCDF). Subjective uncertainty is usually treated with Monte Carlo techniques and leads to a distribution of CCDFs. This presentation discusses the use of the Kaplan/Garrick ordered triple representation for risk in maintaining a distinction between stochastic and subjective uncertainty in PAs for complex systems. The topics discussed include (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of CCDFs required in comparisons with regulatory standards (e.g., 40 CFR Part 191, Subpart B for the disposal of radioactive waste), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the Waste Isolation Pilot Plant, an uncertainty and sensitivity analysis of the MACCS reactor accident consequence analysis model, and the NUREG‐1150 probabilistic risk assessments are used for illustration.

Suggested Citation

  • Jon C. Helton, 1994. "Treatment of Uncertainty in Performance Assessments for Complex Systems," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 483-511, August.
  • Handle: RePEc:wly:riskan:v:14:y:1994:i:4:p:483-511
    DOI: 10.1111/j.1539-6924.1994.tb00266.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1994.tb00266.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1994.tb00266.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. E. Vesely & D. M. Rasmuson, 1984. "Uncertainties in Nuclear Probabilistic Risk Analyses," Risk Analysis, John Wiley & Sons, vol. 4(4), pages 313-322, December.
    2. Selim Sancaktar, 1982. "An Illustration of Matrix Formulation for a Probabilistic Risk‐Assessment Study," Risk Analysis, John Wiley & Sons, vol. 2(3), pages 137-147, September.
    3. Ronald L. Iman, 1987. "A Matrix‐Based Approach to Uncertainty and Sensitivity Analysis for Fault Trees," Risk Analysis, John Wiley & Sons, vol. 7(1), pages 21-33, March.
    4. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    5. Ronald L. Iman & Jon C. Helton, 1991. "The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 591-606, December.
    6. Ronald L. Iman & Jon C. Helton & Jay D. Johnson, 1990. "A Methodology for Grouping Source Terms for Consequence Calculations in Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 507-520, December.
    7. Stanley Kaplan, 1982. "Matrix Theory Formalism for Event Tree Analysis: Application to Nuclear‐Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 2(1), pages 9-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Roger Flage & Terje Aven & Piero Baraldi & Enrico Zio, 2012. "An imprecision importance measure for uncertainty representations interpreted as lower and upper probabilities, with special emphasis on possibility theory," Journal of Risk and Reliability, , vol. 226(6), pages 656-665, December.
    4. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
    5. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    6. Ronald L. Iman & Jon C. Helton, 1991. "The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 591-606, December.
    7. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    8. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    9. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    10. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    11. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    12. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    13. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    14. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    15. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    17. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    18. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    19. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    20. Naomi Aoki, 2018. "Who Would Be Willing to Accept Disaster Debris in Their Backyard? Investigating the Determinants of Public Attitudes in Post‐Fukushima Japan," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 535-547, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:14:y:1994:i:4:p:483-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.