IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i7p949-958.html
   My bibliography  Save this article

Single machine parallel batch scheduling subject to precedence constraints

Author

Listed:
  • T.C.E. Cheng
  • C.T. Ng
  • J.J. Yuan
  • Z.H. Liu

Abstract

We consider the single machine parallel batch scheduling problems to minimize makespan and total completion time, respectively, under precedence relations. The complexities of these two problems are reported as open in the literature. In this paper, we settle these open questions by showing that both problems are strongly NP‐hard, even when the precedence relations are chains. When the processing times of jobs are directly agreeable or inversely agreeable with the precedence relations, there is an O(n2) time algorithm to minimize the makespan. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004

Suggested Citation

  • T.C.E. Cheng & C.T. Ng & J.J. Yuan & Z.H. Liu, 2004. "Single machine parallel batch scheduling subject to precedence constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 949-958, October.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:7:p:949-958
    DOI: 10.1002/nav.20035
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20035
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chung-Yee Lee & Reha Uzsoy & Louis A. Martin-Vega, 1992. "Efficient Algorithms for Scheduling Semiconductor Burn-In Operations," Operations Research, INFORMS, vol. 40(4), pages 764-775, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M Ozlen & M Azizoğlu, 2011. "Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 152-164, January.
    2. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2014. "Approximability results for the resource-constrained project scheduling problem with a single type of resources," Annals of Operations Research, Springer, vol. 213(1), pages 115-130, February.
    3. Yuan Gao & Jinjiang Yuan, 2019. "Unbounded parallel-batch scheduling under agreeable release and processing to minimize total weighted number of tardy jobs," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 698-711, October.
    4. Yuan Gao & Jinjiang Yuan & Zhigang Wei, 2019. "Unbounded parallel-batch scheduling with drop-line tasks," Journal of Scheduling, Springer, vol. 22(4), pages 449-463, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    2. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    3. Yang Fang & Peihai Liu & Xiwen Lu, 2011. "Optimal on-line algorithms for one batch machine with grouped processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 509-516, November.
    4. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    5. Chakhlevitch, Konstantin & Glass, Celia A. & Kellerer, Hans, 2011. "Batch machine production with perishability time windows and limited batch size," European Journal of Operational Research, Elsevier, vol. 210(1), pages 39-47, April.
    6. Guochuan Zhang & Xiaoqiang Cai & C.‐Y Lee & C.K Wong, 2001. "Minimizing makespan on a single batch processing machine with nonidentical job sizes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 226-240, April.
    7. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    8. Li, Dongni & Jiang, Yuzhou & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2023. "An on-line seru scheduling algorithm with proactive waiting considering resource conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 506-515.
    9. Guoqiang Fan & Qingqin Nong, 2018. "A Coordination Mechanism for a Scheduling Game with Uniform-Batching Machines," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.
    10. Koh, Shie-Gheun & Koo, Pyung-Hoi & Kim, Dong-Chun & Hur, Won-Suk, 2005. "Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families," International Journal of Production Economics, Elsevier, vol. 98(1), pages 81-96, October.
    11. Ruyan Fu & Ji Tian & Shisheng Li & Jinjiang Yuan, 2017. "An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1187-1197, November.
    12. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    13. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    14. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    15. Wang, Jun-Qiang & Leung, Joseph Y.-T., 2014. "Scheduling jobs with equal-processing-time on parallel machines with non-identical capacities to minimize makespan," International Journal of Production Economics, Elsevier, vol. 156(C), pages 325-331.
    16. Ciftci, B.B. & Borm, P.E.M. & Hamers, H.J.M. & Slikker, M., 2008. "Batch Sequencing and Cooperation," Other publications TiSEM ed1f8fce-da76-41a6-9a9e-9, Tilburg University, School of Economics and Management.
    17. Zhichao Geng & Jiayu Liu, 0. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    18. Ming Liu & Feifeng Zheng & Zhanguo Zhu & Chengbin Chu, 2014. "Optimal Semi-Online Algorithm for Scheduling on Two Parallel Batch Processing Machines," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(05), pages 1-10.
    19. Beat Gfeller & Leon Peeters & Birgitta Weber & Peter Widmayer, 2009. "Single machine batch scheduling with release times," Journal of Combinatorial Optimization, Springer, vol. 17(3), pages 323-338, April.
    20. Yuan Gao & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2022. "Pareto-scheduling with family jobs or ND-agent on a parallel-batch machine to minimize the makespan and maximum cost," 4OR, Springer, vol. 20(2), pages 273-287, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:7:p:949-958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.