IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v32y2008i4p316-326.html
   My bibliography  Save this article

Spatial and temporal projected distribution of four crop plants in Egypt

Author

Listed:
  • Ahmad K. Hegazy
  • Mahmoud A. Medany
  • Hanan F. Kabiel
  • Mona M. Maez

Abstract

This study focuses on the management of the local agroecosystems in order to adapt planting or sowing practices for the projected climate change scenarios. It is projected that there will be increased air temperature throughout all four seasons in the coming 100 years, from the southern towards the northern parts of Egypt. The objective of this study is to investigate the influence of that increased air temperature on the spatial and temporal distribution of four of the major economic crops in Egypt. The study species are cotton (Gossypium barbadense L., cv. Giza 89), wheat (Triticum aestivum L., cv. Gemiza 9), rice (Oryza stiva L., cv. Sakha 101) and maize (Zea mays L., cv. Hybrid 10). Optimum air temperature allowing maximum growth for each of the study crop cultivars and the current and projected air temperature patterns in the future years were used for projection of the seasonal and crop distribution maps in the years 2005, 2025, 2050, 2075 and 2100. Results showed that sowing dates of a target crop may be managed in order to allow maximum predicted planting area in the same region. The current maximum area suitable for planting the Cotton crop in Egypt (104 thousand Fadden/year; one Fadden = 0.96 hectare or 0.42 acre) showed few variations over the coming hundred years. In this case, the sowing dates should be changed from the hotter months (February to April) to the cooler months (January to February). Alternatively, a great reduction in the area planted by Wheat crop was predicted in the coming 100 years. Despite the early planting, a reduction of about 147 thousand Fadden/year was projected by the year 2075. On the other hand, with earlier sowing dates, the maximum areas that are planted by Rice and Maize may not be greatly affected by the projected increase in air temperature.

Suggested Citation

  • Ahmad K. Hegazy & Mahmoud A. Medany & Hanan F. Kabiel & Mona M. Maez, 2008. "Spatial and temporal projected distribution of four crop plants in Egypt," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 316-326, November.
  • Handle: RePEc:wly:natres:v:32:y:2008:i:4:p:316-326
    DOI: 10.1111/j.1477-8947.2008.00205.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1477-8947.2008.00205.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1477-8947.2008.00205.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. El-Shaer & C. Rosenzweig & A. Iglesias & M. Eid & D. Hillel, 1997. "Impact of climate change on possible scenarios for Egyptian agriculture in the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(3), pages 233-250, September.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    2. Kato, E., 2009. "Soil and water conservation technologies: a buffer against production risk in the face of climate change?: insights from the Nile Basin in Ethiopia," IWMI Working Papers H042477, International Water Management Institute.
    3. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    6. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    8. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    9. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    10. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    11. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    12. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    13. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    14. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    15. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    16. Fullman, Timothy J. & Bunting, Erin L. & Kiker, Gregory A. & Southworth, Jane, 2017. "Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model," Ecological Modelling, Elsevier, vol. 352(C), pages 1-18.
    17. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    19. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.
    20. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:32:y:2008:i:4:p:316-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.