An Explainable ADASYN‐Based Focal Loss Approach for Credit Assessment
Author
Abstract
Suggested Citation
DOI: 10.1002/for.3252
Download full text from publisher
References listed on IDEAS
- Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
- B Baesens & T Van Gestel & M Stepanova & D Van den Poel & J Vanthienen, 2005.
"Neural network survival analysis for personal loan data,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1089-1098, September.
- B. Baesens & T. Van Gestel & M. Stepanova & D. Van Den Poel, 2004. "Neural Network Survival Analysis for Personal Loan Data," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/281, Ghent University, Faculty of Economics and Business Administration.
- Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Post-Print halshs-01889154, HAL.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
- Sidra Mehtab & Jaydip Sen, 2019. "A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing," Papers 1912.07700, arXiv.org.
- Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
- Krivorotov, George, 2023. "Machine learning-based profit modeling for credit card underwriting - implications for credit risk," Journal of Banking & Finance, Elsevier, vol. 149(C).
- Saqib Aziz & Michael Dowling & Helmi Hammami & Anke Piepenbrink, 2022. "Machine learning in finance: A topic modeling approach," Post-Print hal-03700508, HAL.
- Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
- Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01889154, HAL.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Post-Print halshs-01719983, HAL.
- Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
- Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
- Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
- Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
- Jing Hao & Feng He & Feng Ma & Shibo Zhang & Xiaotao Zhang, 2025. "Machine learning vs deep learning in stock market investment: an international evidence," Annals of Operations Research, Springer, vol. 348(1), pages 93-115, May.
- Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
- Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.
- Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Roman P. Bulyga & Alexey A. Sitnov & Liudmila V. Kashirskaya & Irina V. Safonova, 2020. "Transparency of credit institutions," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 3158-3172, June.
- Revathi Bhuvaneswari & Antonio Segalini, 2020. "Determining Secondary Attributes for Credit Evaluation in P2P Lending," Papers 2006.13921, arXiv.org.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- K. S. Naik, 2021. "Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach," Papers 2110.02206, arXiv.org.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Xu Chen & Chunhong Liu & Changchun Gao & Yao Jiang, 2021. "Mechanism Underlying the Formation of Virtual Agglomeration of Creative Industries: Theoretical Analysis and Empirical Research," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
- Ștefan Ionescu & Nora Chiriță & Ionuț Nica & Camelia Delcea, 2023. "An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans," Sustainability, MDPI, vol. 15(15), pages 1-32, August.
- Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
- Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1513-1530. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.