IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v30y2025i3p3201-3211.html
   My bibliography  Save this article

A note on the determinants of non‐fungible tokens returns

Author

Listed:
  • Theodore Panagiotidis
  • Georgios Papapanagiotou

Abstract

We aim to identify the determinants of non‐fungible tokens (NFTs) returns. The 10 most popular NFTs based on their price, trading volume, and market capitalisation are examined. Twenty‐three potential drivers of the returns of each NFT are considered. We employ a Bayesian LASSO model which takes into account stochastic volatility and leverage effect. The results indicate that NFTs returns are primarily driven by volatility and ethereum returns. We find a weak connection between NFTs returns and conventional assets, such as stock, oil, and gold markets.

Suggested Citation

  • Theodore Panagiotidis & Georgios Papapanagiotou, 2025. "A note on the determinants of non‐fungible tokens returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 3201-3211, July.
  • Handle: RePEc:wly:ijfiec:v:30:y:2025:i:3:p:3201-3211
    DOI: 10.1002/ijfe.3008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.3008
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.3008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    6. Umar, Zaghum & Gubareva, Mariya & Teplova, Tamara & Tran, Dang K., 2022. "Covid-19 impact on NFTs and major asset classes interrelations: Insights from the wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 47(PB).
    7. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    8. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    9. Shaen Corbet & John W. Goodell & Samet Gunay & Kerem Kaskaloglu, 2023. "Are DeFi tokens a separate asset class from conventional cryptocurrencies?," Annals of Operations Research, Springer, vol. 322(2), pages 609-630, March.
    10. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
    11. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    12. Yousaf, Imran & Yarovaya, Larisa, 2022. "Herding behavior in conventional cryptocurrency market, non-fungible tokens, and DeFi assets," Finance Research Letters, Elsevier, vol. 50(C).
    13. Aharon, David Y. & Demir, Ender, 2022. "NFTs and asset class spillovers: Lessons from the period around the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 47(PA).
    14. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    15. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Yousaf, Imran & Yarovaya, Larisa, 2022. "Static and dynamic connectedness between NFTs, Defi and other assets: Portfolio implication," Global Finance Journal, Elsevier, vol. 53(C).
    18. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    19. Robert Tibshirani & Jacob Bien & Jerome Friedman & Trevor Hastie & Noah Simon & Jonathan Taylor & Ryan J. Tibshirani, 2012. "Strong rules for discarding predictors in lasso‐type problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 245-266, March.
    20. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    21. Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2022. "Determinants of cryptocurrency returns: A LASSO quantile regression approach," Finance Research Letters, Elsevier, vol. 49(C).
    22. Darjus Hosszejni & Gregor Kastner, 2019. "Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage," Papers 1901.11491, arXiv.org, revised Nov 2019.
    23. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
    24. Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    2. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
    3. Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
    4. Proelss, Juliane & Sévigny, Stéphane & Schweizer, Denis, 2023. "GameFi: The perfect symbiosis of blockchain, tokens, DeFi, and NFTs?," International Review of Financial Analysis, Elsevier, vol. 90(C).
    5. Elie Bouri & Matteo Foglia & Sayar Karmakar & Rangan Gupta, 2024. "Return-Volatility Nexus in the Digital Asset Class: A Dynamic Multilayer Connectedness Analysis," Working Papers 202432, University of Pretoria, Department of Economics.
    6. Valeria V. Lakshina, 2014. "The Fluke Of Stochastic Volatility Versus Garch Inevitability : Which Model Creates Better Forecasts?," HSE Working papers WP BRP 37/FE/2014, National Research University Higher School of Economics.
    7. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    8. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    9. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    10. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    11. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    12. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2013. "News impact curve for stochastic volatility models," Economics Letters, Elsevier, vol. 120(1), pages 130-134.
    13. Rui Luo & Weinan Zhang & Xiaojun Xu & Jun Wang, 2017. "A Neural Stochastic Volatility Model," Papers 1712.00504, arXiv.org, revised Dec 2018.
    14. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    15. Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
    16. Tetsuya Takaishi, 2009. "Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme," Papers 0909.1478, arXiv.org.
    17. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    18. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    19. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Pinar Deniz & Thanasis Stengos, 2020. "Cryptocurrency Returns before and after the Introduction of Bitcoin Futures," JRFM, MDPI, vol. 13(6), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:30:y:2025:i:3:p:3201-3211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.