IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i6p116-d367403.html
   My bibliography  Save this article

Cryptocurrency Returns before and after the Introduction of Bitcoin Futures

Author

Listed:
  • Pinar Deniz

    (Department of Economics, Marmara University, Istanbul 34722, Turkey)

  • Thanasis Stengos

    (Department of Economics, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

This paper examines the behaviour of Bitcoin returns and those of several other cryptocurrencies in the pre and post period of the introduction of the Bitcoin futures market. We use the principal component-guided sparse regression (PC-LASSO) model to analyze several sample sizes for the pre and post periods. Besides the neighbourhood of the break time, the current period is also investigated as returns start to recover after some time. Search intensity is observed to be the most important variable for Bitcoin for all periods, whereas for the other cryptocurrencies there are other variables that seem more important in the pre period, while search intensity still stands out in the post period. Furthermore, GARCH analyses suggest that search intensity increases the volatility of Bitcoin returns more in the post period than it does in the pre period. Our empirical findings suggest that the top five cryptocurrencies are substitutes before the launch of Bitcoin futures. However, this effect is lost, and moreover, there are spillover effects on altcoins during both the post and the recovery period. We find a spillover effect of the introduction of bitcoin futures on altcoins and this effect seems to persist during the recovery period.

Suggested Citation

  • Pinar Deniz & Thanasis Stengos, 2020. "Cryptocurrency Returns before and after the Introduction of Bitcoin Futures," JRFM, MDPI, vol. 13(6), pages 1-21, June.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:6:p:116-:d:367403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/6/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/6/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Shan & Tong, Mu & Yang, Zhongyi & Derbali, Abdelkader, 2019. "Does gold or Bitcoin hedge economic policy uncertainty?," Finance Research Letters, Elsevier, vol. 31(C), pages 171-178.
    2. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    3. Amélie Charles & Olivier Darné, 2019. "Volatility estimation for Bitcoin: Replication and robustness," International Economics, CEPII research center, issue 157, pages 23-32.
    4. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    5. Stein, Jeremy C, 1987. "Informational Externalities and Welfare-Reducing Speculation," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1123-1145, December.
    6. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2020. "A Principal Component-Guided Sparse Regression Approach for the Determination of Bitcoin Returns," JRFM, MDPI, vol. 13(2), pages 1-10, February.
    10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    11. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    12. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    13. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    14. Akyildirim, Erdinc & Corbet, Shaen & Katsiampa, Paraskevi & Kellard, Neil & Sensoy, Ahmet, 2020. "The development of Bitcoin futures: Exploring the interactions between cryptocurrency derivatives," Finance Research Letters, Elsevier, vol. 34(C).
    15. Wonse Kim & Junseok Lee & Kyungwon Kang, 2019. "The Effects of the Introduction of Bitcoin Futures on the Volatility of Bitcoin Returns," Papers 1906.03430, arXiv.org.
    16. Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
    17. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    18. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    19. Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
    20. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    21. Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
    22. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    2. Thanasis Stengos, 2021. "Recent Developments in Cryptocurrency Markets: Co-Movements, Spillovers and Forecasting," JRFM, MDPI, vol. 14(3), pages 1-3, February.
    3. Beatriz Vaz de Melo Mendes & André Fluminense Carneiro, 2020. "A Comprehensive Statistical Analysis of the Six Major Crypto-Currencies from August 2015 through June 2020," JRFM, MDPI, vol. 13(9), pages 1-21, August.
    4. Weige Huang & Xiang Gao, 2023. "Forecasting Bitcoin Futures: A Lasso-BMA Two-Step Predictor Selection for Investment and Hedging Strategies," SAGE Open, , vol. 13(1), pages 21582440231, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Nikolaos A. Kyriazis, 2020. "Is Bitcoin Similar to Gold? An Integrated Overview of Empirical Findings," JRFM, MDPI, vol. 13(5), pages 1-19, May.
    3. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    4. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    5. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    6. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    8. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    9. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    10. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    11. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    12. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    13. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    14. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    15. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    16. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    17. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    18. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    19. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    20. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:6:p:116-:d:367403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.