IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v15y2025i2p126-141.html
   My bibliography  Save this article

Regional Resource Evaluation and Distribution for Onshore Carbon Dioxide Storage and Utilization in Uzbekistan

Author

Listed:
  • Azizbek Kamolov
  • Zafar Turakulov
  • Adham Norkobilov
  • Miroslav Variny
  • Marcos Fallanza

Abstract

Addressing the escalating threat of climate change requires a global response, with significant actions from every nation. Uzbekistan, a member of the Paris Agreement, is actively pursuing sustainable development by reducing greenhouse gas emissions and promoting renewable energy. However, the country's Green Economy strategies currently lack Carbon Capture, Storage, and Utilization (CCUS) technology. A feasibility assessment is crucial to evaluating CCSU's potential for achieving net‐zero emissions, benefiting both the public and scientific communities by informing policy decisions, and providing valuable data. The primary aim of this study is to evaluate Uzbekistan's potential for carbon dioxide (CO2) storage and utilization (CSU) in the near and mid‐term. To achieve this, this work proposes a methodology for efficient CO2 source‐sink matching to facilitate the deployment of CCUS technologies in Uzbekistan. Resource evaluation and spatial analysis methods are used to estimate the total CSU capacity of the region and the geographical distribution of CO2 sources in two large‐scale emitting sectors, specifically from the power and cement plants. According to the results, Uzbekistan has an annual CSU capacity of 1171 million tons CO2, which is several times higher than the annual CO2 emission rate. Additionally, CSU resources are primarily located in the eastern, western, and southern regions of the country, whereas CO2 sink locations near the capital city and its surrounding areas are limited compared to their abundance of CO2 sources. Overall, although the country has ample CO2 storage capacity for CCUS deployment, the prospects for its chemical utilization remain limited in scale. © 2025 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Azizbek Kamolov & Zafar Turakulov & Adham Norkobilov & Miroslav Variny & Marcos Fallanza, 2025. "Regional Resource Evaluation and Distribution for Onshore Carbon Dioxide Storage and Utilization in Uzbekistan," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 15(2), pages 126-141, April.
  • Handle: RePEc:wly:greenh:v:15:y:2025:i:2:p:126-141
    DOI: 10.1002/ghg.2325
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2325
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    2. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    2. Mansi Wang & Noman Arshed & Mubbasher Munir & Samma Faiz Rasool & Weiwen Lin, 2021. "Investigation of the STIRPAT model of environmental quality: a case of nonlinear quantile panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12217-12232, August.
    3. KOVÁCS Edit Veronika & HARANGI-RÁKOS Mónika, 2020. "Cities Vs The Countryside €“ Pros And Cons Of Urban And Rural Life," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 530-539, July.
    4. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    6. Arkadiusz Piwowar & Joanna Harasym, 2020. "The Importance and Prospects of the Use of Algae in Agribusiness," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    7. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Raslavičius, Laurencas & Striūgas, Nerijus & Felneris, Mantas, 2018. "New insights into algae factories of the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 643-654.
    9. Afshin Ghorbani & Mohammad Reza Rahimpour & Younes Ghasemi & Sona Raeissi, 2018. "The Biodiesel of Microalgae as a Solution for Diesel Demand in Iran," Energies, MDPI, vol. 11(4), pages 1-17, April.
    10. Rozita Akbari & Elnaz Khodapanah & Seyyed Alireza Tabatabaei‐Nezhad, 2021. "Experimental investigation of CO2–brine–rock interactions in relation with CO2 sequestration in an Iranian oil reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 69-80, February.
    11. Hasan, Atiye Haj & Avami, Akram, 2018. "Water and emissions nexus for biodiesel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 354-363.
    12. Khorasani, Mahnaz & Sarker, Sudipa & Kabir, Golam & Ali, Syed Mithun, 2022. "Evaluating strategies to decarbonize oil and gas supply chain: Implications for energy policies in emerging economies," Energy, Elsevier, vol. 258(C).
    13. Tatyana Iglina & Pavel Iglin & Dmitry Pashchenko, 2022. "Industrial CO 2 Capture by Algae: A Review and Recent Advances," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
    14. Ravanipour, Masoumeh & Hamidi, Ali & Mahvi, Amir Hossein, 2021. "Microalgae biodiesel: A systematic review in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Mizik, Tamás & Gyarmati, Gábor, 2022. "A biodízel-termelés gazdasági és fenntarthatósági vizsgálata szakirodalom-elemzéssel [Systematic literature review on the economic dimension and sustainability aspects of biodiesel production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 643-669.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:15:y:2025:i:2:p:126-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.