IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i2ne2897.html
   My bibliography  Save this article

P‐min‐Stable Regression Models for Time Series With Extreme Values of Limited Range

Author

Listed:
  • Leonardo Brandao Freitas Nascimento
  • Max Sousa Lima
  • Luiz H. Duczmal

Abstract

In this paper, a P‐min‐stable regression model is proposed for a time series of extreme values observed in a limited interval. The model may be useful when the variable or indicator of interest is the minimum value of a series restricted to the unit interval and is related to other variables through a regression structure. The serial extremal dependence is induced through the marginalization of the Kumaraswamy distribution conditioned on a latent α$$ \alpha $$‐stable process. The model is flexible to capture trends, seasonality, and non‐stationarity. Some properties of the model are presented, as well as the extremogram of the series. Procedures for estimation and inference are discussed and implemented via an Expectation‐Maximization algorithm. As an illustration, the model was used to analyze the minimum relative humidity observed in the Brazilian Amazon.

Suggested Citation

  • Leonardo Brandao Freitas Nascimento & Max Sousa Lima & Luiz H. Duczmal, 2025. "P‐min‐Stable Regression Models for Time Series With Extreme Values of Limited Range," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e2897
    DOI: 10.1002/env.2897
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2897
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    2. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    3. Paola Bortot & Carlo Gaetan, 2014. "A Latent Process Model for Temporal Extremes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 606-621, September.
    4. Hall, Peter & Peng, Liang & Yao, Qiwei, 2002. "Moving-maximum models for extrema of time series," LSE Research Online Documents on Economics 6084, London School of Economics and Political Science, LSE Library.
    5. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    6. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
    7. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    2. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    5. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
    6. Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015. "The information content of money and credit for US activity," Working Paper Series 1803, European Central Bank.
    7. Baris Soybilgen & Ege Yazgan, 2017. "An evaluation of inflation expectations in Turkey," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 17(1), pages 1-31–38.
    8. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    9. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    10. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Pan, Li & Politis, Dimitris N., 2016. "Bootstrap prediction intervals for Markov processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 467-494.
    13. Chatfield, Chris, 1995. "Positive or negative?," International Journal of Forecasting, Elsevier, vol. 11(4), pages 501-502, December.
    14. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    15. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    16. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    17. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    18. Zhengjun Zhang, 2009. "On approximating max-stable processes and constructing extremal copula functions," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 89-114, February.
    19. Pan, Li & Politis, Dimitris, 2014. "Bootstrap prediction intervals for Markov processes," University of California at San Diego, Economics Working Paper Series qt7555757g, Department of Economics, UC San Diego.
    20. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e2897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.