IDEAS home Printed from https://ideas.repec.org/a/vls/finstu/v21y2017i1p41-62.html
   My bibliography  Save this article

Tracking Financial Bubbles On Romania Stock Market

Author

Listed:
  • MITRACHE, Mihai-Andrei

    (Faculty of Economics and International Affairs, Bucharest Academy of Economic Studies, Bucharest, Romania)

  • BOITOUT, Nicolas

    (University of Dijon, Dijon Area, France)

Abstract

The Log-Periodic Power Law (LPPL) is a consistent model capable of detecting explosives financial bubbles, which reflect the positive and nonlinear investors feedbacks. The regime imposed by the model is faster than an exponentially growth rate, combined with logarithmic oscillations. Applying the LPPL model on the top 25 most liquid companies traded on Bucharest Stock Exchange that are part of BET-XT Index basket on daily data between 26/01/1997 – 10/02/2017, we managed to find a total number of 54 financial bubbles regimes.

Suggested Citation

  • MITRACHE, Mihai-Andrei & BOITOUT, Nicolas, 2017. "Tracking Financial Bubbles On Romania Stock Market," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 21(1), pages 41-62.
  • Handle: RePEc:vls:finstu:v:21:y:2017:i:1:p:41-62
    as

    Download full text from publisher

    File URL: http://www.icfm.ro/RePEc/vls/vls_pdf/vol21i1p41-62.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel T. Pele, 2012. "An Lppl Algorithm For Estimating The Critical Time Of A Stock Market Bubble," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 1(2), pages 14-22, DECEMBER.
    2. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    3. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    4. D. Sornette, 2000. "Stock Market Speculation: Spontaneous Symmetry Breaking of Economic Valuation," Papers cond-mat/0004001, arXiv.org.
    5. Sornette, Didier, 2000. "Stock market speculation: Spontaneous symmetry breaking of economic valuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 355-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    2. D. Sornette, 2000. ""Slimming" of power law tails by increasing market returns," Papers cond-mat/0010112, arXiv.org, revised Sep 2001.
    3. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    4. Pele, Daniel Traian & Mazurencu-Marinescu-Pele, Miruna, 2018. "Cryptocurrencies, Metcalfe's law and LPPL models," IRTG 1792 Discussion Papers 2018-056, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Anders Johansen & Didier Sornette, 2000. "The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash," Papers cond-mat/0004263, arXiv.org, revised May 2000.
    6. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    7. C. Vladimir Rodríguez-Caballero & Mauricio Villanueva-Domínguez, 2022. "Predicting cryptocurrency crash dates," Empirical Economics, Springer, vol. 63(6), pages 2855-2873, December.
    8. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    9. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    10. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    11. Martin Herdegen & Sebastian Herrmann, 2017. "Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble," Papers 1711.06679, arXiv.org.
    12. Hideyuki Takagi, 2021. "Exploring the Endogenous Nature of Meme Stocks Using the Log-Periodic Power Law Model and Confidence Indicator," Papers 2110.06190, arXiv.org.
    13. Jaehyung Choi, 2011. "Spontaneous symmetry breaking of arbitrage," Papers 1107.5122, arXiv.org, revised Apr 2012.
    14. Guilherme Demos & Didier Sornette, 2017. "Lagrange regularisation approach to compare nested data sets and determine objectively financial bubbles' inceptions," Papers 1707.07162, arXiv.org.
    15. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    16. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.
    17. Pele, Daniel Traian & Mazurencu-Marinescu-Pele, Miruna, 2019. "Metcalfe's law and herding behaviour in the cryptocurrencies market," Economics Discussion Papers 2019-16, Kiel Institute for the World Economy (IfW Kiel).
    18. Demos, G. & Sornette, D., 2019. "Comparing nested data sets and objectively determining financial bubbles’ inceptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 661-675.
    19. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    20. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    financial bubble; financial modeling; log-periodic power law; stock market;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vls:finstu:v:21:y:2017:i:1:p:41-62. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cfiarro.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniel Mateescu (email available below). General contact details of provider: https://edirc.repec.org/data/cfiarro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.