IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v94y2018i1p97-113.html
   My bibliography  Save this article

Will U.S. Forests Continue to Be a Carbon Sink?

Author

Listed:
  • Xiaohui Tian
  • Brent Sohngen
  • Justin Baker
  • Sara Ohrel
  • Allen A. Fawcett

Abstract

This paper develops structural dynamic methods to project future carbon fluxes in forests. These methods account for land management changes on both the intensive and extensive margins, both of which are critical components of future carbon fluxes. When implemented, the model suggests that U.S. forests remain a carbon sink through most of the coming century, sequestering 128 Tg C y-1. Constraining forestland to its current boundaries and constraining management to current levels reduce average sequestration by 25 to 28 Tg C y-1. An increase in demand leads to increased management and greater sequestration in forests. The results are robust to climate change.

Suggested Citation

  • Xiaohui Tian & Brent Sohngen & Justin Baker & Sara Ohrel & Allen A. Fawcett, 2018. "Will U.S. Forests Continue to Be a Carbon Sink?," Land Economics, University of Wisconsin Press, vol. 94(1), pages 97-113.
  • Handle: RePEc:uwp:landec:v:94:y:2018:i:1:p:97-113
    Note: DOI: 10.3368/le.94.1.97
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/94/1/97
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    2. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    3. Kim, Sei Jin & Baker, Justin S. & Sohngen, Brent L. & Shell, Michael, 2018. "Cumulative global forest carbon implications of regional bioenergy expansion policies," Resource and Energy Economics, Elsevier, vol. 53(C), pages 198-219.
    4. Wenduo Huang & Xiangrong Wang & Dou Zhang, 2024. "The Estimation of Forest Carbon Sink Potential and Influencing Factors in Huangshan National Forest Park in China," Sustainability, MDPI, vol. 16(3), pages 1-19, February.
    5. Daigneault, Adam & Favero, Alice, 2021. "Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 103(C).
    6. Daigneault, Adam J. & Sohngen, Brent L. & Sedjo, Roger, 2020. "Carbon and market effects of U.S. forest taxation policy," Ecological Economics, Elsevier, vol. 178(C).
    7. Daigneault, Adam J. & Baker, Justin S. & Favero, Alice, 2020. "A forest model inter-comparison project (For-MIP) to assess the future of forests under climate, policy and technological stressors," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304585, Agricultural and Applied Economics Association.
    8. Henderson, Jesse D. & Parajuli, Rajan & Abt, Robert C., 2020. "Biological and market responses of pine forests in the US Southeast to carbon fertilization," Ecological Economics, Elsevier, vol. 169(C).
    9. Fuller, Madisen & Baker, Justin & Roberts, Zoey & Latta, Gret & Ohrel, Sara & Gower, Tom, 2023. "Projecting the spatial distribution of tree planting under different policy incentive structures," 2023 Annual Meeting, July 23-25, Washington D.C. 337099, Agricultural and Applied Economics Association.
    10. Bocci, Corinne & Sohngen, Brent & Lupi, Frank & Milian, Bayron, 2020. "Timber or carbon? Evaluating forest conservation strategies through a discrete choice experiment," Ecological Economics, Elsevier, vol. 171(C).

    More about this item

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:94:y:2018:i:1:p:97-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.