IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Boosted regression (boosting): An introductory tutorial and a Stata plugin

Listed author(s):
  • Matthias Schonlau


Registered author(s):

    Boosting, or boosted regression, is a recent data-mining technique that has shown considerable success in predictive accuracy. This article gives an overview of boosting and introduces a new Stata command, boost, that im- plements the boosting algorithm described in Hastie, Tibshirani, and Friedman (2001, 322). The plugin is illustrated with a Gaussian and a logistic regression example. In the Gaussian regression example, the R2 value computed on a test dataset is R2 = 21.3% for linear regression and R2 = 93.8% for boosting. In the logistic regression example, stepwise logistic regression correctly classifies 54.1% of the observations in a test dataset versus 76.0% for boosted logistic regression. Currently, boost accommodates Gaussian (normal), logistic, and Poisson boosted regression. boost is implemented as a Windows C++ plugin. Copyright 2005 by StataCorp LP.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Article provided by StataCorp LP in its journal Stata Journal.

    Volume (Year): 5 (2005)
    Issue (Month): 3 (September)
    Pages: 330-354

    in new window

    Handle: RePEc:tsj:stataj:v:5:y:2005:i:3:p:330-354
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:5:y:2005:i:3:p:330-354. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    or (Lisa Gilmore)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.