IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i5p994-1001.html
   My bibliography  Save this article

Competitive energy consumption under transmission constraints in a multi-supplier power grid system

Author

Listed:
  • Ivan Popov
  • Alexander Krylatov
  • Victor Zakharov
  • Dmitry Ivanov

Abstract

Power grid architectures need to be revised in order to manage the increasing number of producers and, more generally, the decentralisation of energy production and distribution. In this work, we describe a multi-supplier multi-consumer congestion model of a power grid, where the costs of consumers depend on the congestion in nodes and arcs of the power supply network. The consumer goal is both to meet their energy demand and to minimise the costs. We show that the methods of non-atomic routing can be applied in this model in order to describe current distribution in the network. We formulate a consumer cost minimisation game for this setting, and discuss the challenges arising in equilibrium search for this game.

Suggested Citation

  • Ivan Popov & Alexander Krylatov & Victor Zakharov & Dmitry Ivanov, 2017. "Competitive energy consumption under transmission constraints in a multi-supplier power grid system," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(5), pages 994-1001, April.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:5:p:994-1001
    DOI: 10.1080/00207721.2016.1226986
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2016.1226986
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2016.1226986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    2. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    3. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    4. Chao, Hung-Po & Peck, Stephen, 1996. "A Market Mechanism for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 10(1), pages 25-59, July.
    5. C.J. Ziser & Z.Y. Dong & K.P. Wong, 2012. "Incorporating weather uncertainty in demand forecasts for electricity market planning," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(7), pages 1336-1346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsten Neuhoff, 2002. "Optimal congestion treatment for bilateral electricity trading," Working Papers EP05, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    3. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    4. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    5. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    6. Brunekreeft, G., 2003. "Market-based Investment in Electricity Transmission Networks: Controllable Flow," Cambridge Working Papers in Economics 0340, Faculty of Economics, University of Cambridge.
    7. Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
    8. Heffron, Raphael J. & Körner, Marc-Fabian & Sumarno, Theresia & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2022. "How different electricity pricing systems affect the energy trilemma: Assessing Indonesia's electricity market transition," Energy Economics, Elsevier, vol. 107(C).
    9. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Fahrioglu, Murat, 2016. "Effect of demand management on regulated and deregulated electricity sectors," Energy Policy, Elsevier, vol. 90(C), pages 115-120.
    11. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    12. Fridgen, Gilbert & Michaelis, Anne & Rinck, Maximilian & Schöpf, Michael & Weibelzahl, Martin, 2020. "The search for the perfect match: Aligning power-trading products to the energy transition," Energy Policy, Elsevier, vol. 144(C).
    13. Blázquez De Paz, Mario, 2017. "Production or Transmission Investments? A Comparative Analysis," Working Paper Series 1158, Research Institute of Industrial Economics.
    14. Blázquez de Paz, Mario, 2019. "Redispatch in Zonal Pricing Electricity Markets," Working Paper Series 1278, Research Institute of Industrial Economics.
    15. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    16. Holmberg, P. & Philpott, A.B., 2018. "On supply-function equilibria in radial transmission networks," European Journal of Operational Research, Elsevier, vol. 271(3), pages 985-1000.
    17. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2022. "An integrated theory of dispatch and hedging in wholesale electric power markets," Energy Economics, Elsevier, vol. 112(C).
    18. Weibelzahl, Martin & Märtz, Alexandra, 2018. "On the effects of storage facilities on optimal zonal pricing in electricity markets," Energy Policy, Elsevier, vol. 113(C), pages 778-794.
    19. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    20. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:5:p:994-1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.