IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v40y2017i7p771-795.html
   My bibliography  Save this article

Taxi vacancy duration: a regression analysis

Author

Listed:
  • Won Kyung Lee
  • So Young Sohn

Abstract

Taxi vacancy duration is a major efficiency measure for taxi services. A clear understanding of the various factors and their effect on vacancy duration is necessary for the optimal operational management of taxis. Previous research has only dealt with vacancy duration by assuming probability distributions and has not investigated heterogeneity in the data caused by various factors. We develop a parametric duration model using not only new operational characteristics but also variables associated with taxi demand, such as weather, land use, demographics, socioeconomic variables, and accessibility of public transportation. The model is applied to a large-scale New York City (NYC) taxi trip dataset that covers operations for 2013. The results show that all the attributes have significant associations with vacancy duration that follows a log-normal distribution. Our study is expected to help improve the efficiency of taxi operations by decreasing the time spent in vacant states.

Suggested Citation

  • Won Kyung Lee & So Young Sohn, 2017. "Taxi vacancy duration: a regression analysis," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(7), pages 771-795, October.
  • Handle: RePEc:taf:transp:v:40:y:2017:i:7:p:771-795
    DOI: 10.1080/03081060.2017.1340025
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2017.1340025
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2017.1340025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taylor, Brian D. & Fink, Camille N.Y., 2003. "The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature," University of California Transportation Center, Working Papers qt3xk9j8m2, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Chung & Lee, Jungpyo & Sohn, So Young, 2019. "Recommendation of feeder bus routes using neural network embedding-based optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 329-341.
    2. Park, Chung & Sohn, So Young, 2017. "An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 154-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zuduo & Washington, Simon & Hyland, Paul & Sloan, Keith & Liu, Yulin, 2016. "Preference heterogeneity in mode choice based on a nationwide survey with a focus on urban rail," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 178-194.
    2. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    3. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    4. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    5. Agnieszka Gaschi-Uciecha, 2023. "The Problem of Reliability in Public Transport for the Metropolis GMZ Area-Pilots Studies," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    6. Azad, Mojdeh & Abdelqader, Dua & Taboada, Luis M. & Cherry, Christopher R., 2021. "Walk-to-transit demand estimation methods applied at the parcel level to improve pedestrian infrastructure investment," Journal of Transport Geography, Elsevier, vol. 92(C).
    7. Yang, Chao & Wan, Zhiyang & Yuan, Quan & Zhou, Yang & Sun, Maopeng, 2023. "Travel before, during and after the COVID-19 pandemic: Exploring factors in essential travel using empirical data," Journal of Transport Geography, Elsevier, vol. 110(C).
    8. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.
    9. Pike, Susan & Kothawala, Alimurtaza, 2019. "Informing a Pilot: Preparing the Pre-launch Survey for the Davis Amtrak Station Access Program," Institute of Transportation Studies, Working Paper Series qt04p9j3m2, Institute of Transportation Studies, UC Davis.
    10. Cristina Pronello & Amandine Duboz & Valentina Rappazzo, 2017. "Towards Smarter Urban Mobility: Willingness to Pay for an Advanced Traveller Information System in Lyon," Sustainability, MDPI, vol. 9(10), pages 1-21, September.
    11. Yao, Di & Xu, Liqun & Li, Jinpei, 2020. "Does technical efficiency play a mediating role between bus facility scale and ridership attraction? Evidence from bus practices in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 77-96.
    12. Basnak, Paul & Giesen, Ricardo & Muñoz, Juan Carlos, 2020. "Technology choices in public transport planning: A classification framework," Research in Transportation Economics, Elsevier, vol. 83(C).
    13. Tilahun, Nebiyou & Thakuriah, Piyushimita (Vonu) & Li, Moyin & Keita, Yaye, 2016. "Transit use and the work commute: Analyzing the role of last mile issues," Journal of Transport Geography, Elsevier, vol. 54(C), pages 359-368.
    14. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    15. Efthymiou, Dimitrios & Antoniou, Constantinos, 2017. "Understanding the effects of economic crisis on public transport users’ satisfaction and demand," Transport Policy, Elsevier, vol. 53(C), pages 89-97.
    16. Chen, Zhenhua, 2010. "Analysis of factors affect high speed train ridership in the united states —The acela express case study," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207261, Transportation Research Forum.
    17. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2020. "A joint panel binary logit and fractional split model for converting route-level transit ridership data to stop-level boarding and alighting data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 1-16.
    18. Wenting Li & Amer Shalaby & Khandker Nurul Habib, 2022. "Exploring the correlation between ride-hailing and multimodal transit ridership in toronto," Transportation, Springer, vol. 49(3), pages 765-789, June.
    19. Alejandro Sánchez-Atondo & Leonel García & Julio Calderón-Ramírez & José Manuel Gutiérrez-Moreno & Alejandro Mungaray-Moctezuma, 2020. "Understanding Public Transport Ridership in Developing Countries to Promote Sustainable Urban Mobility: A Case Study of Mexicali, Mexico," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    20. Nelson, Peter & Baglino, Andrew & Harrington, Winston & Safirova, Elena & Lipman, Abram, 2007. "Transit in Washington, DC: Current benefits and optimal level of provision," Journal of Urban Economics, Elsevier, vol. 62(2), pages 231-251, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:40:y:2017:i:7:p:771-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.