IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i3p907-922.html
   My bibliography  Save this article

The assembly line worker assignment and balancing problem with stochastic worker availability

Author

Listed:
  • Marcus Ritt
  • Alysson M. Costa
  • Cristóbal Miralles

Abstract

Assembly lines can be employed successfully in sheltered work centres to better include persons with disabilities in the labour market as well as to improve production efficiency. The optimal assignment of a heterogeneous workforce is known as the assembly line worker assignment and balancing problem (ALWABP). These assembly lines are characterised not only by a heterogeneous workforce, but also by high levels of absenteeism, which makes it more difficult to obtain stable and efficient line balancing solutions. In this paper, an extension of the ALWABP to minimise the expected cycle time under uncertain worker availability is proposed. We model this problem as a two-stage mixed integer program, and propose local search heuristics for solving it. Computational experiments show that stochastic modelling can help to improve the line’s efficiency and that the proposed heuristics produce good results for instances of practical size.

Suggested Citation

  • Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:3:p:907-922
    DOI: 10.1080/00207543.2015.1108534
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1108534
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1108534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Avriel & A. C. Williams, 1970. "The Value of Information and Stochastic Programming," Operations Research, INFORMS, vol. 18(5), pages 947-954, October.
    2. Chakravarty, Amiya K. & Shtub, Avraham, 1986. "A cost minimization procedure for mixed model production lines with normally distributed task times," European Journal of Operational Research, Elsevier, vol. 23(1), pages 25-36, January.
    3. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Robert L. Carraway, 1989. "A Dynamic Programming Approach to Stochastic Assembly Line Balancing," Management Science, INFORMS, vol. 35(4), pages 459-471, April.
    5. Araújo, Felipe F.B. & Costa, Alysson M. & Miralles, Cristóbal, 2012. "Two extensions for the ALWABP: Parallel stations and collaborative approach," International Journal of Production Economics, Elsevier, vol. 140(1), pages 483-495.
    6. Sarin, Subhash C. & Erel, Erdal & Dar-El, Ezey M., 1999. "A methodology for solving single-model, stochastic assembly line balancing problem," Omega, Elsevier, vol. 27(5), pages 525-535, October.
    7. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    8. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
    9. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    10. Fred N. Silverman & John C. Carter, 1986. "A Cost-Based Methodology for Stochastic Line Balancing with Intermittent Line Stoppages," Management Science, INFORMS, vol. 32(4), pages 455-463, April.
    11. .Ilker Baybars, 1986. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem," Management Science, INFORMS, vol. 32(8), pages 909-932, August.
    12. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    13. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    14. Edward P. C. Kao, 1976. "A Preference Order Dynamic Program for Stochastic Assembly Line Balancing," Management Science, INFORMS, vol. 22(10), pages 1097-1104, June.
    15. McMullen, Patrick R. & Frazier, Gregory V., 1997. "A heuristic for solving mixed-model line balancing problems with stochastic task durations and parallel stations," International Journal of Production Economics, Elsevier, vol. 51(3), pages 177-190, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lale Özbakır & Gökhan Seçme, 2022. "A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs," Operational Research, Springer, vol. 22(1), pages 577-614, March.
    2. Delorme, Xavier & Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y., 2019. "Minimizing the number of workers in a paced mixed-model assembly line," European Journal of Operational Research, Elsevier, vol. 272(1), pages 188-194.
    3. Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y. & Malyutin, Sergey & Soukhal, Ameur, 2018. "Optimal workforce assignment to operations of a paced assembly line," European Journal of Operational Research, Elsevier, vol. 264(1), pages 200-211.
    4. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    2. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    3. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    4. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    5. Diefenbach, Johannes & Stolletz, Raik, 2022. "Stochastic assembly line balancing: General bounds and reliability-based branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 302(2), pages 589-605.
    6. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    7. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    8. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    9. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    10. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    11. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    12. Daniel Leitold & Agnes Vathy-Fogarassy & Janos Abonyi, 2019. "Empirical working time distribution-based line balancing with integrated simulated annealing and dynamic programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 455-473, June.
    13. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    14. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    15. Wen-Chyuan Chiang & Timothy L. Urban & Chunyong Luo, 2016. "Balancing stochastic two-sided assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6232-6250, October.
    16. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    17. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    18. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    19. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    20. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:3:p:907-922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.