IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i20p6232-6250.html
   My bibliography  Save this article

Balancing stochastic two-sided assembly lines

Author

Listed:
  • Wen-Chyuan Chiang
  • Timothy L. Urban
  • Chunyong Luo

Abstract

In a two-sided assembly line, tasks can be executed simultaneously on both sides of the line. One task cannot be started until both of its direct predecessors on the left and right sides are completed. Therefore, the start time of the task is the maximum of the two predecessors’ finish times. In many realistic situations, it is assumed that the task times are independent and normally distributed with known means and variances. However, the maximum of two normal variables is not normally distributed, but can be well approximated by results from extreme value theory. In this paper, we utilise these results to develop a solution methodology to balance two-sided assembly lines with stochastic task times, minimising the line length and the number of stations while guaranteeing all tasks are completed within the cycle time with a given confidence level.

Suggested Citation

  • Wen-Chyuan Chiang & Timothy L. Urban & Chunyong Luo, 2016. "Balancing stochastic two-sided assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6232-6250, October.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:20:p:6232-6250
    DOI: 10.1080/00207543.2015.1029084
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1029084
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1029084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaofeng & Wu, Erfei & Jin, Ye, 2008. "A station-oriented enumerative algorithm for two-sided assembly line balancing," European Journal of Operational Research, Elsevier, vol. 186(1), pages 435-440, April.
    2. Robert L. Carraway, 1989. "A Dynamic Programming Approach to Stochastic Assembly Line Balancing," Management Science, INFORMS, vol. 35(4), pages 459-471, April.
    3. Lapierre, Sophie D. & Ruiz, Angel & Soriano, Patrick, 2006. "Balancing assembly lines with tabu search," European Journal of Operational Research, Elsevier, vol. 168(3), pages 826-837, February.
    4. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    5. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    6. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
    7. Fred N. Silverman & John C. Carter, 1986. "A Cost-Based Methodology for Stochastic Line Balancing with Intermittent Line Stoppages," Management Science, INFORMS, vol. 32(4), pages 455-463, April.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    9. Urban, Timothy L. & Chiang, Wen-Chyuan, 2006. "An optimal piecewise-linear program for the U-line balancing problem with stochastic task times," European Journal of Operational Research, Elsevier, vol. 168(3), pages 771-782, February.
    10. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    11. S D Lapierre & A B Ruiz, 2004. "Balancing assembly lines: an industrial case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(6), pages 589-597, June.
    12. Xiaofeng, Hu & Erfei, Wu & Jinsong, Bao & Ye, Jin, 2010. "A branch-and-bound algorithm to minimize the line length of a two-sided assembly line," European Journal of Operational Research, Elsevier, vol. 206(3), pages 703-707, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diefenbach, Johannes & Stolletz, Raik, 2022. "Stochastic assembly line balancing: General bounds and reliability-based branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 302(2), pages 589-605.
    2. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Pirogov, Aleksandr & Gurevsky, Evgeny & Rossi, André & Dolgui, Alexandre, 2021. "Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions," European Journal of Operational Research, Elsevier, vol. 290(3), pages 946-955.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    2. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    3. Diefenbach, Johannes & Stolletz, Raik, 2022. "Stochastic assembly line balancing: General bounds and reliability-based branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 302(2), pages 589-605.
    4. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan & Mehmet Sıtkı İlkay, 2017. "Balancing two-sided U-type assembly lines using modified particle swarm optimization algorithm," 4OR, Springer, vol. 15(1), pages 37-66, March.
    5. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    6. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    7. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    8. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    9. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    10. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    11. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    12. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    13. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.
    14. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
    15. Daniel Leitold & Agnes Vathy-Fogarassy & Janos Abonyi, 2019. "Empirical working time distribution-based line balancing with integrated simulated annealing and dynamic programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 455-473, June.
    16. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    17. Dashuang Li & Chaoyong Zhang & Xinyu Shao & Wenwen Lin, 2016. "A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 725-739, August.
    18. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    19. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    20. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:20:p:6232-6250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.