IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i2p213-230.html
   My bibliography  Save this article

Discovering stock dynamics through multidimensional volatility phases

Author

Listed:
  • Hsieh Fushing
  • Shu-Chun Chen
  • Chii-Ruey Hwang

Abstract

To investigate stock dynamics, we consider volatility as a temporal aggregation of semi-extreme events defined on three dimensions: return, volume and trading number. Onset and offset phases of volatility are computed by means of the hierarchical factor segmentation (HFS) algorithm based on high-frequency data. Through these computed volatility phases we search for dynamic patterns by resolving two questions: Is a return's volatility closely associated with significant price changes?, and can we derive an early prediction of the sign of the price change at the offset? Can volatility phases reveal which dimension—return, volume or trading number—is the driving force behind the others? Some computed new features of stock dynamics are counter-intuitive. Almost all significant price changes are marked by volatility within the three dimensions. We develop a data-driven potential-based model to make early predictions of the sign of significant price differences at the end of a volatile period. This model recognizes that when a stock's dynamic enters a volatility state, it typically settles into a subtle imbalance of oscillations between positive and negative returns, and leads to a significant price difference at the offset of volatility. We develop a new statistical analysis to show that a return's volatility onset is more likely to fall behind the onsets of volume and trading number, while the latter two dimensions are very well-correlated with each other. By incorporating this result with behavioral evidence extracted from scatterplots of the logarithm of volume versus the trading number, we postulate that stock dynamics are chiefly driven by a large group of participants, whose collective large-volume trading action is potentially responsible for stimulating volatility in both return and trading number.

Suggested Citation

  • Hsieh Fushing & Shu-Chun Chen & Chii-Ruey Hwang, 2012. "Discovering stock dynamics through multidimensional volatility phases," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 213-230, September.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:213-230
    DOI: 10.1080/14697681003743040
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697681003743040
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697681003743040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Zumbach, 2004. "How trading activity scales with company size in the FTSE 100," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 441-456.
    2. Welch, Ivo, 1992. "Sequential Sales, Learning, and Cascades," Journal of Finance, American Finance Association, vol. 47(2), pages 695-732, June.
    3. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    4. Jim Griffin & Roel Oomen, 2008. "Sampling Returns for Realized Variance Calculations: Tick Time or Transaction Time?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 230-253.
    5. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    6. Gilles Zumbach, 2004. "How the trading activity scales with the company sizes in the FTSE 100," Papers cond-mat/0407769, arXiv.org.
    7. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    8. Oomen, Roel C.A., 2006. "Properties of Realized Variance Under Alternative Sampling Schemes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 219-237, April.
    9. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Lamoureux, Christopher G & Lastrapes, William D, 1994. "Endogenous Trading Volume and Momentum in Stock-Return Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 253-260, April.
    12. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    13. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaudhuri, Kausik & Sen, Rituparna & Tan, Zheng, 2018. "Testing extreme dependence in financial time series," Economic Modelling, Elsevier, vol. 73(C), pages 378-394.
    2. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    3. Xiaodong Wang & Fushing Hsieh, 2021. "Unraveling S&P500 stock volatility and networks -- An encoding-and-decoding approach," Papers 2101.09395, arXiv.org, revised Oct 2021.
    4. Shu-Chun Chen & Hsieh Fushing & Chii-Ruey Hwang, 2013. "Discovering focal regions of slightly-aggregated sparse signals," Computational Statistics, Springer, vol. 28(5), pages 2295-2308, October.
    5. Zeenat Jamal Ansari & Seema Gupta & Meena Bhatia, 2024. "Mapping the Conceptual and Intellectual Structure of the Investor’s Financial Behaviour: A Bibliometric Analysis," South Asian Journal of Business and Management Cases, , vol. 13(2), pages 228-258, August.
    6. Hsieh Fushing & Shu-Chun Chen & Chii-Ruey Hwang, 2014. "Single Stock Dynamics on High-Frequency Data: From a Compressed Coding Perspective," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    2. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    3. Henryk Gurgul & Roland Mestel & Tomasz Wojtowicz, 2007. "Distribution of volume on the American stock market," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 1, pages 143-163.
    4. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    5. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    6. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    7. repec:adr:anecst:y:1991:i:24:p:01 is not listed on IDEAS
    8. Senarathne, Chamil W & Jayasinghe, Prabhath, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," MPRA Paper 78771, University Library of Munich, Germany, revised 04 Apr 2017.
    9. Ata Türkoğlu, 2016. "Normally distributed high-frequency returns: a subordination approach," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 389-409, March.
    10. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    11. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    12. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    13. Saswat Patra & Malay Bhattacharyya, 2021. "Does volume really matter? A risk management perspective using cross‐country evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 118-135, January.
    14. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    15. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    16. repec:lan:wpaper:3326 is not listed on IDEAS
    17. repec:lan:wpaper:3050 is not listed on IDEAS
    18. repec:lan:wpaper:3048 is not listed on IDEAS
    19. Marwan Izzeldin, 2007. "Trading volume and the number of trades," Working Papers 584864, Lancaster University Management School, Economics Department.
    20. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    21. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    22. Razvan Stefanescu & Ramona Dumitriu, 2016. "Contrarian and Momentum Profits during Periods of High Trading Volume preceded by Stock Prices Shocks," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 378-384.
    23. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    24. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:213-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.