IDEAS home Printed from
   My bibliography  Save this article

Trending time-varying coefficient market models


  • Chongshan Zhang
  • Xiangrong Yin


In this paper we study time-varying coefficient (beta coefficient) models with a time trend function to characterize the nonlinear, non-stationary and trending phenomenon in time series and to explain the behavior of asset returns. The general local polynomial method is developed to estimate the time trend and coefficient functions. More importantly, a graphical tool, the plot of the k th-order derivative of the parameter versus time, is proposed to select the proper order of the local polynomial so that the best estimate can be obtained. Finally, we conduct Monte Carlo experiments and a real data analysis to examine the finite sample performance of the proposed modeling procedure and compare it with the Nadaraya--Watson method as well as the local linear method.

Suggested Citation

  • Chongshan Zhang & Xiangrong Yin, 2012. "Trending time-varying coefficient market models," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1533-1546, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:10:p:1533-1546
    DOI: 10.1080/14697688.2011.552918

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:10:p:1533-1546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.