Inference on Consensus Ranking of Distributions
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2023.2252040
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or
for a different version of it.Other versions of this item:
- David M. Kaplan, 2020. "Inference on Consensus Ranking of Distributions," Working Papers 2010, Department of Economics, University of Missouri.
- David M. Kaplan, 2022. "Inference on Consensus Ranking of Distributions," Working Papers 2205, Department of Economics, University of Missouri.
- David M. Kaplan, 2024. "Inference on Consensus Ranking of Distributions," Papers 2408.13949, arXiv.org.
References listed on IDEAS
- Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024.
"Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
- Magne Mogstad & Joseph P. Romano & Azeem Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," NBER Working Papers 26883, National Bureau of Economic Research, Inc.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2023. "Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries," CeMMAP working papers 03/23, Institute for Fiscal Studies.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," Working Papers 2020-16, Becker Friedman Institute for Research In Economics.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2021. "Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries," CeMMAP working papers CWP17/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Magne Mogstad & Joseph P. Romano & Daniel Wilhelm & Azeem M. Shaikh, 2020. "Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries," CeMMAP working papers CWP10/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," RFBerlin Discussion Paper Series 2008, Rockwool Foundation Berlin (RF Berlin).
- Goldman, Matt & Kaplan, David M., 2018.
"Comparing distributions by multiple testing across quantiles or CDF values,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
- David M. Kaplan & Matt Goldman, 2016. "Comparing distributions by multiple testing across quantiles or CDF values," Working Papers 1619, Department of Economics, University of Missouri, revised 22 Feb 2018.
- David M. Kaplan & Matt Goldman, 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Working Papers 1801, Department of Economics, University of Missouri.
- Matt Goldman & David M. Kaplan, 2017. "Comparing distributions by multiple testing across quantiles or CDF values," Papers 1708.04658, arXiv.org.
- David M. Kaplan, 2019.
"distcomp: Comparing distributions,"
Stata Journal, StataCorp LLC, vol. 19(4), pages 832-848, December.
- David M. Kaplan, 2018. "distcomp: Comparing distributions," Working Papers 1817, Department of Economics, University of Missouri.
- David M. Kaplan, 2021. "Distcomp: Comparing distributions," Papers 2110.02327, arXiv.org.
- David Kaplan, 2021. "distcomp: Comparing distributions," 2021 Stata Conference 2, Stata Users Group.
- David M. Kaplan, 2019. "distcomp: Comparing distributions," Working Papers 1908, Department of Economics, University of Missouri.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Alberto Abadie & Joshua Angrist & Guido Imbens, 2002.
"Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings,"
Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
- Alberto Abadie & Joshua Angrist & Guido Imbens, 1999. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Working papers 99-16, Massachusetts Institute of Technology (MIT), Department of Economics.
- Goldman, Matt & Kaplan, David M., 2018.
"Comparing distributions by multiple testing across quantiles or CDF values,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
- David M. Kaplan & Matt Goldman, 2013. "Comparing distributions by multiple testing across quantiles," Working Papers 1319, Department of Economics, University of Missouri, revised Feb 2018.
- David M. Kaplan & Matt Goldman, 2016. "Comparing distributions by multiple testing across quantiles or CDF values," Working Papers 1619, Department of Economics, University of Missouri, revised 22 Feb 2018.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David M Kaplan & Wei Zhao, 2023.
"Comparing latent inequality with ordinal data,"
The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 189-214.
- David M. Kaplan & Longhao Zhuo, 2018. "Comparing latent inequality with ordinal data," Working Papers 1816, Department of Economics, University of Missouri, revised Feb 2019.
- David M. Kaplan & Wei Zhao, 2025. "Comparing latent inequality with ordinal data," Papers 2501.05338, arXiv.org.
- David M. Kaplan & Wei Zhao, 2022. "Comparing Latent Inequality with Ordinal Data," Working Papers 2206, Department of Economics, University of Missouri.
- David M. Kaplan & Longhao Zhuo, 2019. "Comparing latent inequality with ordinal data," Working Papers 1909, Department of Economics, University of Missouri.
- Wei Zhao & David M. Kaplan, 2024.
"Conditions for extrapolating differences in consumption to differences in welfare,"
Economic Inquiry, Western Economic Association International, vol. 62(3), pages 1090-1104, July.
- Wei Zhao & David M. Kaplan, 2023. "Conditions for Extrapolating Differences in Consumption to Differences in Welfare," Working Papers 2307, Department of Economics, University of Missouri.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Goldman, Matt & Kaplan, David M., 2017.
"Fractional order statistic approximation for nonparametric conditional quantile inference,"
Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
- David M. Kaplan & Matt Goldman, 2015. "Fractional order statistic approximation for nonparametric conditional quantile inference," Working Papers 1502, Department of Economics, University of Missouri.
- Matt Goldman & David M. Kaplan, 2016. "Fractional order statistic approximation for nonparametric conditional quantile inference," Papers 1609.09035, arXiv.org.
- Xin Liu, 2024.
"Averaging Estimation for Instrumental Variables Quantile Regression,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1290-1312, October.
- Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Working Papers 1907, Department of Economics, University of Missouri.
- Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Papers 1910.04245, arXiv.org.
- Pereda-Fernández, Santiago, 2023.
"Identification and estimation of triangular models with a binary treatment,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
- Santiago Pereda Fernández, 2019. "Identification and estimation of triangular models with a binary treatment," Temi di discussione (Economic working papers) 1210, Bank of Italy, Economic Research and International Relations Area.
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Heyman, Fredrik & Norbäck, Pehr-Johan & Persson, Lars, 2017.
"Talent, Career Choice and Competition: The Gender Wage Gap at the Top,"
Working Paper Series
1169, Research Institute of Industrial Economics, revised 06 Mar 2023.
- Fredrik Heyman & Pehr-Johan Norbäck & Lars Persson, 2020. "Talent, Career Choice and Competition: The Gender Wage Gap at the Top," CESifo Working Paper Series 8657, CESifo.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Carlos Madeira, 2025. "How accurately do consumers report their debts in household surveys?," BIS Working Papers 1258, Bank for International Settlements.
- Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
- Kaspar Wüthrich, 2020.
"A Comparison of Two Quantile Models With Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
- Kaspar W thrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
- Wüthrich, Kaspar, 2020. "A Comparison of Two Quantile Models With Endogeneity," University of California at San Diego, Economics Working Paper Series qt0q43931f, Department of Economics, UC San Diego.
- S. S. Swathysree & Manisha Chakrabarty & Debopriti Bhattacharya, 2023. "Getting Real in the Real Consumption Expenditure: A Case of Rural India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(4), pages 817-846, December.
- Yinchu Zhu, 2018. "Learning non-smooth models: instrumental variable quantile regressions and related problems," Papers 1805.06855, arXiv.org, revised Sep 2019.
- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Emanuele Millemaci & Fabio Monteforte & Jonathan R. W. Temple, 2025.
"Have Autocrats Governed for the Long Term?,"
Kyklos, Wiley Blackwell, vol. 78(2), pages 440-465, May.
- Millemaci, Emanuele & Monteforte, Fabio & Temple, Jonathan R. W., 2023. "Have autocrats governed for the long term?," SocArXiv w8khb, Center for Open Science.
- Victor Gay, 2023.
"Culture: An Empirical Investigation of Beliefs, Work, and Fertility. A Verification and Reproduction of Fernández and Fogli (2009),"
Post-Print
hal-04194417, HAL.
- Gay, Victor, 2023. "Culture: An Empirical Investigation of Beliefs, Work, and Fertility – A Verification and Reproduction of Fernández and Fogli (2009)," I4R Discussion Paper Series 91, The Institute for Replication (I4R).
- David Kang & Seojeong Lee & Juha Song, 2025.
"Convergence Rates of GMM Estimators with Nonsmooth Moments under Misspecification,"
Working Papers
423283930, Lancaster University Management School, Economics Department.
- Byunghoon Kang & Seojeong Lee & Juha Song, 2025. "Convergence Rates of GMM Estimators with Nonsmooth Moments under Misspecification," Papers 2501.09540, arXiv.org.
- Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Matt Goldman & David M. Kaplan, 2018.
"Non‐parametric inference on (conditional) quantile differences and interquantile ranges, using L‐statistics,"
Econometrics Journal, Royal Economic Society, vol. 21(2), pages 136-169, June.
- David M. Kaplan & Matt Goldman, 2015. "Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics," Working Papers 1503, Department of Economics, University of Missouri.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018.
"Generalized indirect inference for discrete choice models,"
Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
- Anthony A. Smith, Jr. & Michael Keane, 2004. "Generalized Indirect Inference for Discrete Choice Models," Econometric Society 2004 North American Winter Meetings 512, Econometric Society.
- Marianne Bruins & James A. Duffy & Michael P. Keane & Anthony A. Smith, Jr, 2015. "Generalized Indirect Inference for Discrete Choice Models," Economics Papers 2015-W08, Economics Group, Nuffield College, University of Oxford.
More about this item
JEL classification:
- C29 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Other
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:42:y:2024:i:3:p:839-850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.