IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p488-499.html
   My bibliography  Save this article

Detection of Infectious Disease Outbreaks From Laboratory Data With Reporting Delays

Author

Listed:
  • Angela Noufaily
  • Paddy Farrington
  • Paul Garthwaite
  • Doyo Gragn Enki
  • Nick Andrews
  • Andre Charlett

Abstract

Many statistical surveillance systems for the timely detection of outbreaks of infectious disease operate on laboratory data. Such data typically incur reporting delays between the time at which a specimen is collected for diagnostic purposes, and the time at which the results of the laboratory analysis become available. Statistical surveillance systems currently in use usually make some ad hoc adjustment for such delays, or use counts by time of report. We propose a new statistical approach that takes account of the delays explicitly, by monitoring the number of specimens identified in the current and past m time units, where m is a tuning parameter. Values expected in the absence of an outbreak are estimated from counts observed in recent years (typically 5 years). We study the method in the context of an outbreak detection system used in the United Kingdom and several other European countries. We propose a suitable test statistic for the null hypothesis that no outbreak is currently occurring. We derive its null variance, incorporating uncertainty about the estimated delay distribution. Simulations and applications to some test datasets suggest the method works well, and can improve performance over ad hoc methods in current use. Supplementary materials for this article are available online.

Suggested Citation

  • Angela Noufaily & Paddy Farrington & Paul Garthwaite & Doyo Gragn Enki & Nick Andrews & Andre Charlett, 2016. "Detection of Infectious Disease Outbreaks From Laboratory Data With Reporting Delays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 488-499, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:488-499
    DOI: 10.1080/01621459.2015.1119047
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1119047
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1119047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip S. Rosenberg & Mitchell H. Gail, 1991. "Backcalculation of Flexible Linear Models of the Human Immunodeficiency Virus Infection Curve," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(2), pages 269-282, June.
    2. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    3. Douglas N. Midthune & Michael P. Fay & Limin X. Clegg & Eric J. Feuer, 2005. "Modeling Reporting Delays and Reporting Corrections in Cancer Registry Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 61-70, March.
    4. C. P. Farrington & N. J. Andrews & A. D. Beale & M. A. Catchpole, 1996. "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 547-563, May.
    5. Michael Höhle & Matthias an der Heiden, 2014. "Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011," Biometrics, The International Biometric Society, vol. 70(4), pages 993-1002, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    2. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    3. Bianca Cox & Françoise Wuillaume & Herman Oyen & Sophie Maes, 2010. "Monitoring of all-cause mortality in Belgium (Be-MOMO): a new and automated system for the early detection and quantification of the mortality impact of public health events," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 55(4), pages 251-259, August.
    4. Michael Höhle, 2007. "$${\tt surveillance}$$ : An R package for the monitoring of infectious diseases," Computational Statistics, Springer, vol. 22(4), pages 571-582, December.
    5. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
    6. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    7. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    8. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2019. "Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740," IJERPH, MDPI, vol. 16(8), pages 1-3, April.
    9. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    11. Christin Schröder & Luis Alberto Peña Diaz & Anna Maria Rohde & Brar Piening & Seven Johannes Sam Aghdassi & Georg Pilarski & Norbert Thoma & Petra Gastmeier & Rasmus Leistner & Michael Behnke, 2020. "Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    12. Xiaobei Shen & Changliang Zou & Wei Jiang & Fugee Tsung, 2013. "Monitoring poisson count data with probability control limits when sample sizes are time varying," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 625-636, December.
    13. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    15. Sergio Di Martino & Sara Romano & Michela Bertolotto & Nattiya Kanhabua & Antonino Mazzeo & Wolfgang Nejdl, 2017. "Towards Exploiting Social Networks for Detecting Epidemic Outbreaks," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(1), pages 61-71, March.
    16. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    17. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
    18. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2018. "A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases," IJERPH, MDPI, vol. 15(8), pages 1-13, August.
    19. Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.
    20. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:488-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.