IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v32y2020i3p563-586.html
   My bibliography  Save this article

Kernel smoothed probability mass functions for ordered datatypes

Author

Listed:
  • Jeffrey S. Racine
  • Qi Li
  • Karen X. Yan

Abstract

We propose a kernel function for ordered categorical data that overcomes limitations present in ordered kernel functions appearing in the literature on the estimation of probability mass functions for multinomial ordered data. Some limitations arise from assumptions made about the support of the underlying random variable. Furthermore, many existing ordered kernel functions lack a particularly appealing property, namely the ability to deliver discrete uniform probability estimates for some value of the smoothing parameter. We propose an asymmetric empirical support kernel function that adapts to the data at hand and possesses certain desirable features. There are no difficulties arising from zero counts caused by gaps in the data while it encompasses both the empirical proportions and the discrete uniform probabilities at the lower and upper boundaries of the smoothing parameter. We propose likelihood and least-squares cross-validation for smoothing parameter selection and study their asymptotic and finite-sample behaviour.

Suggested Citation

  • Jeffrey S. Racine & Qi Li & Karen X. Yan, 2020. "Kernel smoothed probability mass functions for ordered datatypes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 563-586, July.
  • Handle: RePEc:taf:gnstxx:v:32:y:2020:i:3:p:563-586
    DOI: 10.1080/10485252.2020.1759595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2020.1759595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2020.1759595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Hall & Qi Li & Jeffrey S. Racine, 2007. "Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 784-789, November.
    2. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    3. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    4. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
    2. Senga Kiessé, Tristan & Durrieu, Gilles, 2024. "On a discrete symmetric optimal associated kernel for estimating count data distributions," Statistics & Probability Letters, Elsevier, vol. 208(C).
    3. Pang Du & Christopher F. Parmeter & Jeffrey S. Racine, 2021. "Shape Constrained Kernel PDF and PMF Estimation," Department of Economics Working Papers 2021-05, McMaster University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    2. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.
    3. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    4. Phillip Heiler & Jana Mareckova, 2019. "Shrinkage for Categorical Regressors," Papers 1901.01898, arXiv.org.
    5. Hsiao, Cheng & Li, Qi & Racine, Jeffrey S., 2007. "A consistent model specification test with mixed discrete and continuous data," Journal of Econometrics, Elsevier, vol. 140(2), pages 802-826, October.
    6. Haupt, Harry & Schnurbus, Joachim & Semmler, Willi, 2018. "Estimation of grouped, time-varying convergence in economic growth," Econometrics and Statistics, Elsevier, vol. 8(C), pages 141-158.
    7. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    8. Jean Pierre Huiban & Camilla Mastromarco & Antonio Musolesi & Michel Simioni, 2016. "The impact of pollution abatement investments on production technology: new insights from frontier analysis," SEEDS Working Papers 0716, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jul 2016.
    9. Tingting Cheng & Jiti Gao & Xibin Zhang, 2019. "Nonparametric localized bandwidth selection for Kernel density estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 733-762, August.
    10. Jean Pierre Huiban & Camilla Mastromarco & Antonio Musolesi & Michel Simioni, 2018. "Reconciling the Porter hypothesis with the traditional paradigm about environmental regulation: a nonparametric approach," Journal of Productivity Analysis, Springer, vol. 50(3), pages 85-100, December.
    11. repec:wyi:journl:002112 is not listed on IDEAS
    12. Zonglin He & Jean D. Opsomer, 2015. "Local polynomial regression with an ordinal covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 516-531, December.
    13. Simar, Leopold & Zelenyuk, Valentin, 2011. "To Smooth or Not to Smooth? The Case of Discrete Variables in Nonparametric Regressions," LIDAM Discussion Papers ISBA 2011042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    15. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    16. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
    17. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    18. Li, Dong & Li, Qi, 2010. "Nonparametric/semiparametric estimation and testing of econometric models with data dependent smoothing parameters," Journal of Econometrics, Elsevier, vol. 157(1), pages 179-190, July.
    19. McLeod, Logan, 2011. "A nonparametric vs. latent class model of general practitioner utilization: Evidence from Canada," Journal of Health Economics, Elsevier, vol. 30(6), pages 1261-1279.
    20. Chen, Xirong & Gao, Wenzheng & Li, Zheng, 2018. "A data-driven bandwidth selection method for the smoothed maximum score estimator," Economics Letters, Elsevier, vol. 170(C), pages 24-26.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:32:y:2020:i:3:p:563-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.