IDEAS home Printed from
   My bibliography  Save this article

Nonlinear analysis for forecasting currencies: are they useful to the portfolio manager?


  • Foort Hamelink


The importance of a time-varying specification for both the return and the risk of financial assets is well known. The purpose of this study is to investigate if some of the most recently developed econometric models, combined with technical indicators often used by practitioners, can significantly predict future returns. While most studies have focused on either univariate series or in-sample analyses of a given econometric specification, this study considers a multivariate framework where a US based investor daily reallocates a portfolio of three currencies (Deutschmark, Swiss Franc and Japanese Yen). Series of three years out-of-sample forecasts are analysed in terms of risk and return and it is shown that some of the tested speciications can indeed signiicantly predict future daily returns and correlations over this three-year period.

Suggested Citation

  • Foort Hamelink, 2001. "Nonlinear analysis for forecasting currencies: are they useful to the portfolio manager?," The European Journal of Finance, Taylor & Francis Journals, vol. 7(4), pages 335-355.
  • Handle: RePEc:taf:eurjfi:v:7:y:2001:i:4:p:335-355 DOI: 10.1080/13518470110071146

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    2. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    3. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    4. Baer, James D., 1993. "An empirical investigation of risk classes: Are common proxies valid?," The Quarterly Review of Economics and Finance, Elsevier, vol. 33(1), pages 33-49.
    5. Fama, Eugene F, 1970. "Multiperiod Consumption-Investment Decisions," American Economic Review, American Economic Association, vol. 60(1), pages 163-174, March.
    6. Mark P. Taylor, 1995. "The Economics of Exchange Rates," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 13-47, March.
    7. Gourieroux, Christian & Monfort, Alain, 1992. "Qualitative threshold ARCH models," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 159-199.
    8. Giliberto, M. & Hamelink, F. & Hoesli, M. & Macgregor, B., 1996. "Optimal Diversification Within Multi-Asset Portfolio Using a Conditional Heteroscedasticity Approach: Evidence from the US and the UK," Papers 96.12, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    9. Froot, Kenneth A & Thaler, Richard H, 1990. "Foreign Exchange," Journal of Economic Perspectives, American Economic Association, vol. 4(3), pages 179-192, Summer.
    10. Elton, Edwin J & Gruber, Martin J, 1971. "Improved Forecasting Through the Design of Homogeneous Groups," The Journal of Business, University of Chicago Press, vol. 44(4), pages 432-450, October.
    11. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    12. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    13. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(03), pages 285-300, September.
    14. Levich, Richard M. & Thomas, Lee III, 1993. "The significance of technical trading-rule profits in the foreign exchange market: a bootstrap approach," Journal of International Money and Finance, Elsevier, vol. 12(5), pages 451-474, October.
    15. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    16. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    19. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    20. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:7:y:2001:i:4:p:335-355. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.