IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v49y2017i17p1715-1731.html
   My bibliography  Save this article

A comparison of risk aggregation estimates using copulas and Fleishman distributions

Author

Listed:
  • Gary van Vuuren
  • Riaan de Jongh

Abstract

Determining banks’ expected losses (EL) is straightforward because they are calculated using a linear combination of credit risk-related measures. Non-linear metrics, like economic capital (EC), pose considerable implementation challenges including computation complexity and a lack of adequate risk aggregation and attribution techniques when multiple portfolios and/or product segmentations are involved. Copulas have been used to overcome these problems, but the Fleishman procedure, which uses a polynomial transformation to generate non-normal data, may provide a more tractable alternative. In this article, EC simulation estimates using the extended (multivariate) Fleishman method and the Gumbel copula are compared. The Fleishman approach is found to be easier to implement than the Gumbel approach and provides comparable results when the correlation and concordance between losses are low. The Fleishman method preserves the first four moments and two measures of dependence (Pearson’s $$\rho $$ρ and Kendal’s $$\tau $$τ ); the copula approach preserves only the first two moments of the empirical loss distributions.

Suggested Citation

  • Gary van Vuuren & Riaan de Jongh, 2017. "A comparison of risk aggregation estimates using copulas and Fleishman distributions," Applied Economics, Taylor & Francis Journals, vol. 49(17), pages 1715-1731, April.
  • Handle: RePEc:taf:applec:v:49:y:2017:i:17:p:1715-1731
    DOI: 10.1080/00036846.2016.1223832
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2016.1223832
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2016.1223832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    2. Michael R. Harwell & Ronald C. Serlin, 1989. "A Nonparametric Test Statistic for the General Linear Model," Journal of Educational and Behavioral Statistics, , vol. 14(4), pages 351-371, December.
    3. Pandu Tadikamalla, 1980. "On simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 273-279, June.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    6. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    7. Todd Headrick & Shlomo Sawilowsky, 1999. "Simulating correlated multivariate nonnormal distributions: Extending the fleishman power method," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 251-251, June.
    8. Todd Headrick & Shlomo Sawilowsky, 1999. "Simulating correlated multivariate nonnormal distributions: Extending the fleishman power method," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 25-35, March.
    9. Henry Kaiser & Kern Dickman, 1962. "Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 179-182, June.
    10. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    11. Rosen, Dan & Saunders, David, 2010. "Risk factor contributions in portfolio credit risk models," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 336-349, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Subaihi, Ali A., 2004. "Simulating Correlated Multivariate Pseudorandom Numbers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i04).
    2. repec:jss:jstsof:09:i04 is not listed on IDEAS
    3. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    4. Ke-Hai Yuan & Peter Bentler, 2002. "On robusiness of the normal-theory based asymptotic distributions of three reliability coefficient estimates," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 251-259, June.
    5. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    6. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    7. M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," CESifo Working Paper Series 6432, CESifo.
    8. Beasley, T. Mark & Zumbo, Bruno D., 2003. "Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 569-593, April.
    9. Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
    10. Mishra, SK, 2004. "On generating correlated random variables with a given valid or invalid Correlation matrix," MPRA Paper 1782, University Library of Munich, Germany.
    11. Headrick, Todd C., 2002. "Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 685-711, October.
    12. repec:jss:jstsof:19:i03 is not listed on IDEAS
    13. Yen Lee & David Kaplan, 2018. "Generating Multivariate Ordinal Data via Entropy Principles," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 156-181, March.
    14. Headrick, Todd C. & Mugdadi, Abdel, 2006. "On simulating multivariate non-normal distributions from the generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3343-3353, July.
    15. Nagahara, Yuichi, 2004. "A method of simulating multivariate nonnormal distributions by the Pearson distribution system and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 1-29, August.
    16. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    17. Njål Foldnes & Steffen Grønneberg, 2015. "How General is the Vale–Maurelli Simulation Approach?," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1066-1083, December.
    18. Karen M. Douglas & Robert J. Mislevy, 2010. "Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 280-306, June.
    19. Oscar L. Olvera Astivia & Bruno D. Zumbo, 2019. "A Note on the Solution Multiplicity of the Vale–Maurelli Intermediate Correlation Equation," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 127-143, April.
    20. Headrick, Todd C. & Sheng, Yanyan & Hodis, Flaviu-Adrian, 2007. "Numerical Computing and Graphics for the Power Method Transformation Using Mathematica," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i03).
    21. Mahul, Olivier, 2002. "Hedging Price Risk in the Presence of Crop Yield and Revenue Insurance," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24881, European Association of Agricultural Economists.
    22. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:49:y:2017:i:17:p:1715-1731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.