IDEAS home Printed from
   My bibliography  Save this article

Volatility forecasting by quantile regression


  • Alex YiHou Huang


Quantile regression allows one to predict the volatility of time series without assuming an explicit form for the underlying distribution. Financial assets are known to have irregular return patterns; not only the volatility but also the distribution functions themselves may vary with time, so traditional time series models are often unreliable. This study presents a new approach to volatility forecasting by quantile regression utilizing a uniformly spaced series of estimated quantiles. The proposed method provides much more complete information on the underlying distribution, without recourse to an assumed functional form. Based on an empirical study of seven stock indices, using 16 years of daily return data, the proposed approach produces better volatility forecasts for six of the seven indices.

Suggested Citation

  • Alex YiHou Huang, 2012. "Volatility forecasting by quantile regression," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 423-433, February.
  • Handle: RePEc:taf:applec:44:y:2012:i:4:p:423-433
    DOI: 10.1080/00036846.2010.508727

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:44:y:2012:i:4:p:423-433. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.