IDEAS home Printed from
   My bibliography  Save this article

Nonparametric conditional density estimation of labour force participation


  • Anil Kumar


Labour force participation decision has been studied primarily in a parametric framework. The weaknesses of the parametric estimators to misspecification of the error distribution and to functional form assumptions are well known. This paper compares the predictive performance of widely used parametric and semiparametric estimators with results obtained from nonparametric kernel conditional density estimation with likelihood cross-validated bandwidth selection and mixed data type. The results are striking. The predictive performance of the nonparametric estimator is 95% against 71% to 77% of the parametric and semiparametric estimators. The nonparametric estimator is able to correctly predict the outcome for 83% of non-participants in the labour force as against 15% by probit and logit models. This underscores the need to use nonparametric estimators in studying labour market behaviour.

Suggested Citation

  • Anil Kumar, 2006. "Nonparametric conditional density estimation of labour force participation," Applied Economics Letters, Taylor & Francis Journals, vol. 13(13), pages 835-841.
  • Handle: RePEc:taf:apeclt:v:13:y:2006:i:13:p:835-841 DOI: 10.1080/13504850500425204

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Weiren Wang, 1997. "Semi-parametric estimation of the effect of health on labour force participation of married women," Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 325-329.
    2. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
    3. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    4. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    5. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    6. Ana Fernandez & Juan Rodriquez-Poo, 1997. "Estimation and specification testing in female labor participation models: parametric and semiparametric methods," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 229-247.
    7. Horowitz, Joel L., 1993. "Semiparametric estimation of a work-trip mode choice model," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 49-70, July.
    8. Gerfin, Michael, 1996. "Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
    9. Stern, Steven, 1996. "Semiparametric estimates of the supply and demand effects of disability on labor force participation," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 49-70.
    10. Heckman, James J, 1993. "What Has Been Learned about Labor Supply in the Past Twenty Years?," American Economic Review, American Economic Association, vol. 83(2), pages 116-121, May.
    11. Mikiyo Kii Niizeki, 1998. "Empirical tests of short-term interest rate models: a nonparametric approach," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 347-352.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:13:y:2006:i:13:p:835-841. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.