IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i8d10.1007_s11269-024-03802-2.html
   My bibliography  Save this article

Variance-based Global Sensitivity Analysis of Surface Runoff Parameters for Hydrological Modeling of a Real Peri-urban Ungauged Basin

Author

Listed:
  • C. Giudicianni

    (Università degli Studi di Pavia)

  • I. Di Cicco

    (Università degli Studi della Campania “Luigi Vanvitelli”)

  • A. Di Nardo

    (Università degli Studi della Campania “Luigi Vanvitelli”)

  • R. Greco

    (Università degli Studi della Campania “Luigi Vanvitelli”)

Abstract

This paper proposes a new multi-step approach for sensitivity assessment of surface runoff parameters. The procedure has been tested on a peri-urban basin in southern Italy, interested by intense urbanization. The basin has limited data about land characteristics, and nearby precipitation measurements are not available. Accordingly, rainfall events are defined based on depth-duration-frequency curve valid for the area. The main novelties of the work are to provide a general framework for assessing the influence of runoff parameters (i.e. depression storage and surface roughness) for a basin model in SWMM in relation to rain events of various intensity/duration, and to provide a ranking of crucial parameters significantly affecting peak discharge and total volume of the hydrograph, for an ungauged basin, by means the Fourier Amplitude Sensitivity Test (FAST). Results indicate the dependence on rainfall characteristics of the relative importance of the parameters describing the pervious and impervious areas. Notably, the peak discharge of the shortest considered event is influenced only by the two parameters of the impervious area, while the opposite holds for the longest rain event. The total runoff volume is mostly influenced by the depression storage of impervious areas, with the parameters of pervious areas becoming more influential for longer rain events. Results allow a clear interpretation of the modelled physical processes variability within the basin and their relationship with rainfall/areas features, thus providing useful insights for key parameter definition in other contexts and for other models.

Suggested Citation

  • C. Giudicianni & I. Di Cicco & A. Di Nardo & R. Greco, 2024. "Variance-based Global Sensitivity Analysis of Surface Runoff Parameters for Hydrological Modeling of a Real Peri-urban Ungauged Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 3007-3022, June.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03802-2
    DOI: 10.1007/s11269-024-03802-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03802-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03802-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    2. Yongwei Gong & Xiaoning Li & Dandan Zhai & Dingkun Yin & Ruining Song & Junqi Li & Xing Fang & Donghai Yuan, 2018. "Influence of Rainfall, Model Parameters and Routing Methods on Stormwater Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 735-750, January.
    3. Saltelli, Andrea & Bolado, Ricardo, 1998. "An alternative way to compute Fourier amplitude sensitivity test (FAST)," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 445-460, February.
    4. Ankur Srivastava & Nikul Kumari & Minotshing Maza, 2020. "Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3779-3794, September.
    5. Zening Wu & Bingyan Ma & Huiliang Wang & Caihong Hu & Hong Lv & Xiangyang Zhang, 2021. "Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2115-2128, May.
    6. A. Bahremand & F. Smedt, 2008. "Distributed Hydrological Modeling and Sensitivity Analysis in Torysa Watershed, Slovakia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(3), pages 393-408, March.
    7. Majid Hashemi & Najmeh Mahjouri, 2022. "Global Sensitivity Analysis-based Design of Low Impact Development Practices for Urban Runoff Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2953-2972, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Du & Qiongfang Li & Pengfei He & Zhenhua Zou & Zhengmo Zhou & Shuhong Xu & Xingye Han & Tianshan Zeng, 2023. "Simultaneous Optimization of SWMM Parameters by the Dynamic System Response Curve with Multi-Objective Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(13), pages 5061-5079, October.
    2. Jing Peng & Hucheng Zhao & Rui Li & Runzhao Xue, 2024. "Parameter sensitivity analysis of SWMM: a case study of airport airfield area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6551-6568, May.
    3. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    4. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    5. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    6. Miao Liu & Yongsheng Ding & Zeyu Shen & Qiao Kong, 2025. "Alternating iterative coupling of hydrological and hydrodynamic models applied to Lingjiang river basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 291-320, January.
    7. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    8. Julia Hall & Conor Murphy, 2010. "Vulnerability Analysis of Future Public Water Supply Under Changing Climate Conditions: A Study of the Moy Catchment, Western Ireland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3527-3545, October.
    9. Agee, Philip & Nikdel, Leila & McCoy, Andrew & Kianpour rad, Simin & Gao, Xinghua, 2024. "Manufactured housing: Energy burden outcomes from measured and simulated building performance data," Energy Policy, Elsevier, vol. 186(C).
    10. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    11. H. Zeinivand & F. Smedt, 2009. "Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2271-2287, September.
    12. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    13. Jose Luiz F. Barbosa & Antonio P. Coimbra & Dan Simon & Wesley P. Calixto, 2022. "Optimization Process Applied in the Thermal and Luminous Design of High Power LED Luminaires," Energies, MDPI, vol. 15(20), pages 1-28, October.
    14. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    15. Retno Agustarini & Yetti Heryati & Yelin Adalina & Wahyu Catur Adinugroho & Dhany Yuniati & Rizki Ary Fambayun & Gerhard Eli Sabastian & Asep Hidayat & Hesti Lestari Tata & William Ingram & Aulia Perd, 2022. "The Development of Indigofera spp. as a Source of Natural Dyes to Increase Community Incomes on Timor Island, Indonesia," Economies, MDPI, vol. 10(2), pages 1-30, February.
    16. Sumeet R. Patil & H. Christopher Frey, 2004. "Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 573-585, June.
    17. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    18. Runxi Li & Chengshuai Liu & Yehai Tang & Chaojie Niu & Yang Fan & Qingyuan Luo & Caihong Hu, 2024. "Study on Runoff Simulation with Multi-source Precipitation Information Fusion Based on Multi-model Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6139-6155, December.
    19. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    20. Layimar Cegarra & Andrea Colins & Ziomara P Gerdtzen & Marco T Nuñez & J Cristian Salgado, 2019. "Mathematical modeling of the relocation of the divalent metal transporter DMT1 in the intestinal iron absorption process," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03802-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.