IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i13p3527-3545.html
   My bibliography  Save this article

Vulnerability Analysis of Future Public Water Supply Under Changing Climate Conditions: A Study of the Moy Catchment, Western Ireland

Author

Listed:
  • Julia Hall
  • Conor Murphy

Abstract

An application of the Water Evaluation and Planning tool Version 21 (WEAP21) is developed to analyse the vulnerability of the future public water supply in the River Moy catchment, western Ireland. The River Moy’s future hydrology is modelled using the WEAP21 integrated rainfall runoff module and an ensemble of statistically downscaled future climate series. This approach facilitates the identification of the most vulnerable future public water supplies without being constrained by the availability of historically observed streamflow records. The model is calibrated by linking the model-independent parameter estimation tool (PEST) with the hydrological model and verified by reproducing observed streamflow records. This research suggests an emerging vulnerability to water stress of the public water supply sector under the four modelled scenarios, for areas which currently have plenty of water available. These results present a basis for future planning and management of the Moy catchment and its water resources. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Julia Hall & Conor Murphy, 2010. "Vulnerability Analysis of Future Public Water Supply Under Changing Climate Conditions: A Study of the Moy Catchment, Western Ireland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3527-3545, October.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3527-3545
    DOI: 10.1007/s11269-010-9618-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9618-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9618-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bahremand & F. Smedt, 2008. "Distributed Hydrological Modeling and Sensitivity Analysis in Torysa Watershed, Slovakia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(3), pages 393-408, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghadeer Jubeh & Ziad Mimi, 2012. "Governance and Climate Vulnerability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4147-4162, November.
    2. Jenq-Tzong Shiau & Ching-Nuo Chen & Chang-Tai Tsai, 2012. "Physiographic Drainage-Inundation Model Based Flooding Vulnerability Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1307-1323, March.
    3. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    4. Kirsten Harma & Mark Johnson & Stewart Cohen, 2012. "Future Water Supply and Demand in the Okanagan Basin, British Columbia: A Scenario-Based Analysis of Multiple, Interacting Stressors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 667-689, February.
    5. Jenq-Tzong Shiau & Ya-Yi Hsiao, 2012. "Water-deficit-based drought risk assessments in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 237-257, October.
    6. C. Harris & A. Quinn & J. Bridgeman, 2013. "Quantification of uncertainty sources in a probabilistic climate change assessment of future water shortages," Climatic Change, Springer, vol. 121(2), pages 317-329, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    2. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    3. H. Zeinivand & F. Smedt, 2009. "Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2271-2287, September.
    4. Abdolreza Bahremand & Florimond Smedt, 2010. "Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2869-2880, September.
    5. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    6. Jing Yang & Yongbo Liu & Wanhong Yang & Yaning Chen, 2012. "Multi-Objective Sensitivity Analysis of a Fully Distributed Hydrologic Model WetSpa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 109-128, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3527-3545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.