IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i6d10.1007_s11269-022-03187-0.html
   My bibliography  Save this article

Drainage Systems Optimization Under Climate Change Scenarios

Author

Listed:
  • Diana Fiorillo

    (University of Naples Federico II)

  • Francesco Paola

    (University of Naples Federico II)

  • Giuseppe Ascione

    (University of Naples Federico II)

  • Maurizio Giugni

    (University of Naples Federico II)

Abstract

The increasing frequency of extreme rainstorms due to climate changes calls for cost-effective methodologies to optimize drainage networks and flood risk mitigation practices. This paper presents an effective methodology that combines two well-known methods to optimize the drainage network design. The methodology uses the Harmony Search algorithm to identify the best solution for the drainage network and the simulations obtained through the Storm Water Management Model to verify the respect of the hydraulic constraints. The methodology is applied to the literature case study of Anytown, showing a significant reduction of 34.5% of the drainage network design cost compared with the common Rational Method. Moreover, the methodology is able to identify the optimum allocation and volumes of detention ponds for runoff control in case of variations in rainfall regime. The methodology allowed to prevent floods, by decreasing the channel filling degree.

Suggested Citation

  • Diana Fiorillo & Francesco Paola & Giuseppe Ascione & Maurizio Giugni, 2023. "Drainage Systems Optimization Under Climate Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2465-2482, May.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03187-0
    DOI: 10.1007/s11269-022-03187-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03187-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03187-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zekâi Şen, 2020. "Water Structures and Climate Change Impact: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4197-4216, October.
    2. Abbas Afshar & Fariborz Massoumi & Amin Afshar & Miquel Mariño, 2015. "State of the Art Review of Ant Colony Optimization Applications in Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3891-3904, September.
    3. Jun-Hyun Kim & Hwan Yong Kim & Fabiana Demarie, 2017. "Facilitators and Barriers of Applying Low Impact Development Practices in Urban Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3795-3808, September.
    4. da Conceicao Cunha, Maria & Ribeiro, Luisa, 2004. "Tabu search algorithms for water network optimization," European Journal of Operational Research, Elsevier, vol. 157(3), pages 746-758, September.
    5. Francesco Paola & Maurizio Giugni & Davide Portolano, 2017. "Pressure Management Through Optimal Location and Setting of Valves in Water Distribution Networks Using a Music-Inspired Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1517-1533, March.
    6. F. Paola & M. Giugni & F. Pugliese & P. Romano, 2018. "Optimal Design of LIDs in Urban Stormwater Systems Using a Harmony-Search Decision Support System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4933-4951, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.
    2. Z. Jia & C. Xu & W. Luo, 2020. "Optimizing Green Infrastructure Implementation with a Land Parcel-Based Credit Trading Approach on Different Spatial Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1709-1723, March.
    3. Tong Chen & Mo Wang & Jin Su & Jianjun Li, 2023. "Unlocking the Positive Impact of Bio-Swales on Hydrology, Water Quality, and Biodiversity: A Bibliometric Review," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    4. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2015. "A lean optimization algorithm for water distribution network design optimization," Working Papers 2015020, University of Antwerp, Faculty of Business and Economics.
    5. Gerd Lupp & Aude Zingraff-Hamed & Josh J. Huang & Amy Oen & Stephan Pauleit, 2020. "Living Labs—A Concept for Co-Designing Nature-Based Solutions," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    6. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    7. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    8. Hossein Fallah & Ozgur Kisi & Sungwon Kim & Mohammad Rezaie-Balf, 2019. "A New Optimization Approach for the Least-Cost Design of Water Distribution Networks: Improved Crow Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3595-3613, August.
    9. Nagarajan Shanmugavel & Rema Rajendran, 2022. "Adoption of Rainwater Harvesting: a Dual-factor Approach by Integrating Theory of Planned Behaviour and Norm Activation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2827-2845, June.
    10. Mehdi Dini & Asghar Asadi, 2020. "Optimal Operational Scheduling of Available Partially Closed Valves for Pressure Management in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2571-2583, June.
    11. Mohammad Azizipour & Vahid Ghalenoei & M. H. Afshar & S. S. Solis, 2016. "Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3995-4009, September.
    12. Nikhil Hooda & Om Damani, 2019. "JalTantra: A System for the Design and Optimization of Rural Piped Water Networks," Service Science, INFORMS, vol. 49(6), pages 447-458, November.
    13. Francesco Pugliese & Carlo Gerundo & Francesco Paola & Gerardo Caroppi & Maurizio Giugni, 2022. "Enhancing the Urban Resilience to Flood Risk Through a Decision Support Tool for the LID-BMPs Optimal Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5633-5654, November.
    14. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    15. Anna Palla & Ilaria Gnecco, 2022. "On the Effectiveness of Domestic Rainwater Harvesting Systems to Support Urban Flood Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5897-5914, December.
    16. Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.
    17. Roberto del Teso & Elena Gómez & Elvira Estruch-Juan & Enrique Cabrera, 2019. "Topographic Energy Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4385-4400, September.
    18. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    19. Shintaro Negishi & Takashi Ikegami, 2021. "Robust Scheduling for Pumping in a Water Distribution System under the Uncertainty of Activating Regulation Reserves," Energies, MDPI, vol. 14(2), pages 1-18, January.
    20. Laino, Emilio & Iglesias, Gregorio, 2023. "Extreme climate change hazards and impacts on European coastal cities: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03187-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.