IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i7d10.1007_s11269-022-03157-6.html
   My bibliography  Save this article

Partial Wavelet Coherence to Evaluate Scale-dependent Relationships Between Precipitation/Surface Water and Groundwater Levels in a Groundwater System

Author

Listed:
  • Xiufen Gu

    (Yantai University)

  • HongGuang Sun

    (Hohai University
    Hohai University)

  • Yong Zhang

    (University of Alabama)

  • Shujun Zhang

    (Hohai University)

  • Chengpeng Lu

    (Hohai University)

Abstract

Identifying the scale-dependent control of various surface factors on a groundwater system is a challenge due to the potential interdependence between these factors. Here, this challenge was addressed using partial wavelet coherency (PWC), which can detect localized and scale-specific bivariate relationships between predictor and response variables after removing the impact of other variables. The analysis was done for groundwater systems in a humid area (Tuscaloosa, Alabama) and an arid area (Lake Havasu City, Arizona). The results indicate that the total precipitation and precipitation duration show the advantage in controlling the groundwater flow in humid and arid areas, respectively. Precipitation has more significant impacts on the coherence between surface water and groundwater in an arid area, which decreases by 3% on small time scales ( 120 days). However, surface water shows more important effects on the coherence between precipitation and groundwater on large scales in a humid area, which decreases by 47%. Overall, the analysis highlights that the impacts of precipitation (or surface water) on the coherence between surface water (or precipitation) and groundwater level are changing with the time scale and climatic belt. The temporal scale dependency is primarily led by the seasonality of the influence factors, while the spatial dependency is mainly due to various evapotranspiration rates and drought/flood episodes. These findings provide useful insights into untangling the localized and scale-specific bivariate relationships in a groundwater system, which is an important topic in water-resource prediction.

Suggested Citation

  • Xiufen Gu & HongGuang Sun & Yong Zhang & Shujun Zhang & Chengpeng Lu, 2022. "Partial Wavelet Coherence to Evaluate Scale-dependent Relationships Between Precipitation/Surface Water and Groundwater Levels in a Groundwater System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2509-2522, May.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03157-6
    DOI: 10.1007/s11269-022-03157-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03157-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03157-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    3. Richard G. Taylor & Martin C. Todd & Lister Kongola & Louise Maurice & Emmanuel Nahozya & Hosea Sanga & Alan M. MacDonald, 2013. "Evidence of the dependence of groundwater resources on extreme rainfall in East Africa," Nature Climate Change, Nature, vol. 3(4), pages 374-378, April.
    4. M. O. Cuthbert & T. Gleeson & N. Moosdorf & K. M. Befus & A. Schneider & J. Hartmann & B. Lehner, 2019. "Global patterns and dynamics of climate–groundwater interactions," Nature Climate Change, Nature, vol. 9(2), pages 137-141, February.
    5. Zhang Jing & Lan-yue Zhang & Qin Xie & Yao Li & Shi-huai Deng & Fei Shen & Yuan-wei Li & Hong Xiao & Gang Yang & Chun Song, 2016. "An Empirical Method to Investigate the Spatial and Temporal Distribution of Annual Average Groundwater Recharge Intensity-a Case Study in Grand River, Michigan, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 195-206, January.
    6. Firouzi, Shahrokh & Wang, Xiangning, 2021. "The interrelationship between order flow, exchange rate, and the role of American economic news," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    2. M. Sekhar & Sat Kumar Tomer & S. Thiyaku & P. Giriraj & Sanjeeva Murthy & Vishal K. Mehta, 2017. "Groundwater Level Dynamics in Bengaluru City, India," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
    3. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    4. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    5. Feyera A. Hirpa & Lorenzo Alfieri & Thomas Lees & Jian Peng & Ellen Dyer & Simon J. Dadson, 2019. "Streamflow response to climate change in the Greater Horn of Africa," Climatic Change, Springer, vol. 156(3), pages 341-363, October.
    6. Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    7. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    8. Kayhomayoon, Zahra & Jamnani, Mostafa Rahimi & Rashidi, Sajjad & Ghordoyee Milan, Sami & Arya Azar, Naser & Berndtsson, Ronny, 2023. "Soft computing assessment of current and future groundwater resources under CMIP6 scenarios in northwestern Iran," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Mohd Khairul Idlan Muhammad & Mohamed Salem Nashwan & Shamsuddin Shahid & Tarmizi bin Ismail & Young Hoon Song & Eun-Sung Chung, 2019. "Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    10. Shima Kamali & Keyvan Asghari, 2023. "The Effect of Meteorological and Hydrological Drought on Groundwater Storage Under Climate Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2925-2943, June.
    11. Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
    12. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    13. Riwaz Kumar Adhikari & Abdullah Gokhan Yilmaz & Bandita Mainali & Phil Dyson & Monzur Alam Imteaz, 2022. "Methods of Groundwater Recharge Estimation under Climate Change: A Review," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    14. Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
    15. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    16. Kolusu, S. R. & Shamsudduha, M. & Todd, M. C. & Taylor, R. G. & Seddon, D. & Kashaigili, J. J. & Ebrahim, Girma Y. & Cuthbert, M. O. & Sorensen, J. P. R. & Villholth, Karen G. & MacDonald, A. M. & Mac, 2019. "The El Nino event of 2015-2016: climate anomalies and their impact on groundwater resources in East and Southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 23:1751-176.
    17. Leonardo V. Noto & Giuseppe Cipolla & Antonio Francipane & Dario Pumo, 2023. "Climate Change in the Mediterranean Basin (Part I): Induced Alterations on Climate Forcings and Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2287-2305, May.
    18. Fairouz Slama & Emna Gargouri-Ellouze & Rachida Bouhlila, 2020. "Impact of rainfall structure and climate change on soil and groundwater salinization," Climatic Change, Springer, vol. 163(1), pages 395-413, November.
    19. Hadeel E. Khairan & Salah L. Zubaidi & Syed Fawad Raza & Maysoun Hameed & Nadhir Al-Ansari & Hussein Mohammed Ridha, 2023. "Examination of Single- and Hybrid-Based Metaheuristic Algorithms in ANN Reference Evapotranspiration Estimating," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    20. Saleem A. Salman & Shamsuddin Shahid & Haitham Abdulmohsin Afan & Mohammed Sanusi Shiru & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Changes in Climatic Water Availability and Crop Water Demand for Iraq Region," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03157-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.