IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp732-741.html
   My bibliography  Save this article

Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain

Author

Listed:
  • Liang, Hao
  • Qin, Wei
  • Hu, Kelin
  • Tao, Hongbing
  • Li, Baoguo

Abstract

Over-exploitation of groundwater for irrigation has led to a series of ecological and environmental problems in the North China Plain (NCP). Identifying the water consumption and groundwater level dynamics under different cropping systems can help to develop groundwater neutral system in the NCP. The WHCNS (soil Water, Heat, Carbon and Nitrogen Simulator) model was applied to quantify the effects of different cropping systems (2H1Y, two harvests in one year; 3H2Y, three harvests in two years; and 1H1Y, one harvest in one year) on groundwater use and crop growth, and to explore the trade-offs of possible scenarios on the decline of groundwater level and cereal yield. Results showed that WHCNS performed well in simulating soil water content, leaf area index, dry matter and crop yield, as well as groundwater level dynamics, with the Nash and Sutcliffe Efficiency > 0.4 and index of agreement > 0.8. The simulated results indicated that the groundwater levels of 2H1Y decreased faster than those of other cropping systems, at a decline rate of 0.33 m yr−1. Irrigation of 300 mm yr−1 for the remaining high yield of winter wheat mainly resulted in the decline of groundwater level in the NCP. Scenario analyses showed that the groundwater levels would stop decreasing when the current planting area of winter wheat decreased by 76%. However, the reduction of wheat planting area (scenario 1) will also decrease the annual yield by 27% (from 13,547 to 9909 kg ha−1). Fallowing (scenario 2) may reduce annual yield by 50% (from 13,547 to 6834 kg ha−1) in order to maintain groundwater level. The SNWT (South to North Water Transfer) project (scenario 3) may have to provide 50% of irrigation water (130 mm yr−1), to prevent groundwater decline while maintaining the current yield. Scenario 3 could be better than scenario 1 only if the water price was less than 8 ¥m-3. In the future, reducing winter wheat planting area (especially for low-yield cropland) may be a good option to mitigate groundwater decline while maintaining relatively high yield and income for local farmers in the NCP.

Suggested Citation

  • Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:732-741
    DOI: 10.1016/j.agwat.2018.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418315464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    2. Yang, Yanmin & Yang, Yonghui & Moiwo, Juana Paul & Hu, Yukun, 2010. "Estimation of irrigation requirement for sustainable water resources reallocation in North China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1711-1721, November.
    3. N. Zhou & S. Zhao, 2013. "Urbanization process and induced environmental geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 797-810, June.
    4. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    5. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    6. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Wang, Yanmei & Shao, Liwei, 2010. "Water use efficiency and associated traits in winter wheat cultivars in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1117-1125, August.
    7. Jane Qiu, 2010. "China faces up to groundwater crisis," Nature, Nature, vol. 466(7304), pages 308-308, July.
    8. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    9. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    10. F. Huang & G. Wang & Y. Yang & C. Wang, 2014. "Overexploitation status of groundwater and induced geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 727-741, September.
    11. Richard G. Taylor & Martin C. Todd & Lister Kongola & Louise Maurice & Emmanuel Nahozya & Hosea Sanga & Alan M. MacDonald, 2013. "Evidence of the dependence of groundwater resources on extreme rainfall in East Africa," Nature Climate Change, Nature, vol. 3(4), pages 374-378, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Huanyuan Wang & Baoguo Li & Liang Jin & Kelin Hu, 2020. "Exploring a Sustainable Cropping System in the North China Plain Using a Modelling Approach," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    3. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    3. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    4. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    5. Chen, Qiaomin & Liu, Yujie & Ge, Quansheng & Pan, Tao, 2018. "Impacts of historic climate variability and land use change on winter wheat climatic productivity in the North China Plain during 1980–2010," Land Use Policy, Elsevier, vol. 76(C), pages 1-9.
    6. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    7. Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    9. Wu, Dong & Fang, Shibo & Li, Xuan & He, Di & Zhu, Yongchao & Yang, Zaiqiang & Xu, Jiaxin & Wu, Yingjie, 2019. "Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain," Agricultural Water Management, Elsevier, vol. 214(C), pages 78-86.
    10. Xu, Ruixuan & Zhao, Haiming & Liu, Guibo & Li, Yuan & Li, Shoujiao & Zhang, Yingjun & Liu, Nan & Ma, Lei, 2022. "Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain," Agricultural Systems, Elsevier, vol. 195(C).
    11. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    12. Li, Quanqi & Bian, Chengyue & Liu, Xinhui & Ma, Changjian & Liu, Quanru, 2015. "Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain," Agricultural Water Management, Elsevier, vol. 153(C), pages 71-76.
    13. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    14. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    15. Xue Wang & Xiubin Li, 2018. "Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    16. Yao, Chunsheng & Li, Jinpeng & Zhang, Zhen & Liu, Ying & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Improving wheat yield, quality and resource utilization efficiency through nitrogen management based on micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Luo, Jianmei & Zhang, Hongmei & Qi, Yongqing & Pei, Hongwei & Shen, Yanjun, 2022. "Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).
    19. Huanyuan Wang & Baoguo Li & Liang Jin & Kelin Hu, 2020. "Exploring a Sustainable Cropping System in the North China Plain Using a Modelling Approach," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    20. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:732-741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.