IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i4d10.1007_s11269-017-1869-1.html
   My bibliography  Save this article

A Global Hydrological Drought Index Dataset Based on Gravity Recovery and Climate Experiment (GRACE) Data

Author

Listed:
  • Ning Nie

    (East China Normal University
    Nanjing University)

  • Wanchang Zhang

    (Chinese Academy of Sciences)

  • Hao Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huadong Guo

    (Chinese Academy of Sciences)

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites have been used in drought/flood monitoring by observing terrestrial water storage (TWS) change. Meteorological drought indicators or other identified disaster information were usually adopted in association with GRACE-observed changes in TWS for the determination of the occurrence and severity of droughts/floods. Inter-comparisons of dry conditions based on TWS change on a global scale, however, were very difficult because TWS anomalies are not comparable for different hydro-climatic regions. In this paper, we established a global dataset of GRACE-based dimensionless drought index, the Total Storage Deficit Index (TSDI), which is spatially comparable and capable of independently examining the characteristics of dry/wet spells globally. The globally mapped GRACE-based TSDI was examined with some reported extreme hydrologic events, which suggested that the results were fairly consistent with documented drought/flood disaster information. Moreover, comparisons of the GRACE-based TSDI with other frequently used drought indicators, such as the Standardized Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), and the Palmer Hydrological Drought Index (PHDI), suggested that the TSDI was significantly correlated with the SPI at three different time scales, the PDSI, and the PHDI over most parts of the global surface. The longer the time scale of the selected SPI, the stronger the correlation tended to be with the TSDI. Moreover, the correlation of the TSDI with the PHDI was higher than that with the PDSI over almost the whole global surface. With regard to its performance, this study suggested that the TSDI derived from GRACE-based TWS could be a useful dimensionless index for global and regional hydrological drought monitoring, especially for areas where meteo-hydrological observations are insufficient or human activities are intensive.

Suggested Citation

  • Ning Nie & Wanchang Zhang & Hao Chen & Huadong Guo, 2018. "A Global Hydrological Drought Index Dataset Based on Gravity Recovery and Climate Experiment (GRACE) Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1275-1290, March.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1869-1
    DOI: 10.1007/s11269-017-1869-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1869-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1869-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 2004. "Index for 2004," European Union Politics, , vol. 5(4), pages 511-512, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhao Meng & Shengzhi Huang & Qiang Huang & Linyin Cheng & Wei Fang, 2021. "The Reconstruction and Extension of Terrestrial Water Storage Based on a Combined Prediction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5291-5306, December.
    2. Sanaz Moghim, 2020. "Assessment of Water Storage Changes Using GRACE and GLDAS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 685-697, January.
    3. Peijun Li & Yuanyuan Zha & Liangsheng Shi & Hua Zhong & Chak-Hau Michael Tso & Mousong Wu, 2022. "Assessing the Global Relationships Between Teleconnection Factors and Terrestrial Water Storage Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 119-133, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olunifesi Adekunle Suraj, 2016. "Managing Telecommunications for Development: An Analysis of Intellectual Capital in Nigerian Telecommunication Industry," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-30, March.
    2. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    3. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    4. M. Ionita & P. Scholz & S. Chelcea, 2016. "Assessment of droughts in Romania using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1483-1498, April.
    5. Sakinah Mat Zin & Ahmad Azrin Adnan & Iskandar Hasan Abdullah, 2017. "How Can Ibn Khaldun’s Economic Philosophy Revive the Intellectual Capital of Entrepreneurs," Asian Social Science, Canadian Center of Science and Education, vol. 13(6), pages 164-164, June.
    6. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    7. Cherchye, Laurens & Knox Lovell, C.A. & Moesen, Wim & Van Puyenbroeck, Tom, 2007. "One market, one number? A composite indicator assessment of EU internal market dynamics," European Economic Review, Elsevier, vol. 51(3), pages 749-779, April.
    8. Sandy Tubeuf & Marc Perronnin, 2008. "New prospects in the analysis of inequalities in health: a measurement of health encompassing several dimensions of health," Health, Econometrics and Data Group (HEDG) Working Papers 08/01, HEDG, c/o Department of Economics, University of York.
    9. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    10. Olga Alipova & Lada Litvinova & Andrey Lovakov & Maria Yudkevich, 2018. "Inbreds And Non-Inbreds Among Russian Academics: Short-Term Similarity And Long-Term Differences In Productivity," HSE Working papers WP BRP 48/EDU/2018, National Research University Higher School of Economics.
    11. Queiroz, Bernardo L & Gonzaga, Marcos Roberto & Nogales, Ana Maria & Torrente, Bruno & de Abreu, Daisy Maria Xavier, 2019. "Life expectancy, adult mortality and completeness of death counts in Brazil and regions: comparative analysis of IHME, IBGE and other researchers estimates of levels and trends," OSF Preprints pj3sx, Center for Open Science.
    12. Szara Katarzyna, 2019. "Uneven Distribution Possibilities of Creative Capital Development in Rural Aareas (Case Study of the Podkarpackie Communes, Poland)," Eastern European Countryside, Sciendo, vol. 25(1), pages 145-169, December.
    13. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    14. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    15. Martin Dubrovsky & Miroslav Trnka & Ian Holman & Eva Svobodova & Paula Harrison, 2015. "Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators," Climatic Change, Springer, vol. 128(3), pages 169-186, February.
    16. Ratapol Wudhikarn & Nopasit Chakpitak & Gilles Neubert, 2020. "Improving the Strategic Benchmarking of Intellectual Capital Management in Logistics Service Providers," Post-Print hal-03188190, HAL.
    17. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    18. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    19. Alcaniz, Leire & Gomez-Bezares, Fernando & Roslender, Robin, 2011. "Theoretical perspectives on intellectual capital: A backward look and a proposal for going forward," Accounting forum, Elsevier, vol. 35(2), pages 104-117.
    20. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1869-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.