IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i2p589-602.html
   My bibliography  Save this article

A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin

Author

Listed:
  • Shivshanker Patel
  • Parthasarathy Ramachandran

Abstract

Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive–loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE). Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:589-602
    DOI: 10.1007/s11269-014-0705-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0705-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0705-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
    2. G. E. P. Box & G. M. Jenkins & J. F. MacGregor, 1974. "Some Recent Advances in Forecasting and Control," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(2), pages 158-179, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José-Luis Molina & Santiago Zazo, 2017. "Causal Reasoning for the Analysis of Rivers Runoff Temporal Behavior," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4669-4681, November.
    2. Yajie Wu & Yuan Chen & Yong Tian, 2022. "Incorporating Empirical Orthogonal Function Analysis into Machine Learning Models for Streamflow Prediction," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    3. Hakan Tongal & Martijn Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    4. Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    5. Zhangjun Liu & Shenglian Guo & Honggang Zhang & Dedi Liu & Guang Yang, 2016. "Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2111-2126, May.
    6. Isabel Kaufmann Almeida & Aleska Kaufmann Almeida & Jorge Luiz Steffen & Teodorico Alves Sobrinho, 2016. "Model for Estimating the Time of Concentration in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4083-4096, September.
    7. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    8. Peiman Parisouj & Hamid Mohebzadeh & Taesam Lee, 2020. "Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4113-4131, October.
    9. Ran-Ran He & Yuanfang Chen & Qin Huang & Zheng-Wei Pan & Yong Liu, 2020. "Predictability of Monthly Streamflow Time Series and its Relationship with Basin Characteristics: an Empirical Study Based on the MOPEX Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4991-5007, December.
    10. José-Luis Molina & Santiago Zazo & Ana-María Martín-Casado & María-Carmen Patino-Alonso, 2020. "Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods," Sustainability, MDPI, vol. 12(5), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    2. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    3. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    4. Xia Pan & Jeffrey Jarrett, 2012. "Why and how to use vector autoregressive models for quality control: the guideline and procedures," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(3), pages 935-948, April.
    5. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    6. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    7. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    8. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    9. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    10. Xing Wang & Yijun Wang & Bin Weng & Aleksandr Vinel, 2020. "Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with Representation Learning and Temporal Convolutional Network," Papers 2010.01197, arXiv.org.
    11. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    12. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    13. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    14. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    15. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    16. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    17. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
    18. Kwan Lee & Wei-Chiao Hung & Chung-Chieh Meng, 2008. "Deterministic Insight into ANN Model Performance for Storm Runoff Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 67-82, January.
    19. Christian Sonesson, 2003. "Evaluations of some Exponentially Weighted Moving Average methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1115-1133.
    20. C. Iglesias & J. Martínez Torres & P. García Nieto & J. Alonso Fernández & C. Díaz Muñiz & J. Piñeiro & J. Taboada, 2014. "Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 319-331, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:589-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.