Author
Listed:
- D. Nagesh Kumar
- K. Srinivasa Raju
- T. Sathish
Abstract
Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs to forecast monthly river flows. Two different networks, namely the feed forward network and the recurrent neural network, have been chosen. The feed forward network is trained using the conventional back propagation algorithm with many improvements and the recurrent neural network is trained using the method of ordered partial derivatives. The selection of architecture and the training procedure for both the networks are presented. The selected ANN models were used to train and forecast the monthly flows of a river in India, with a catchment area of 5189 km 2 up to the gauging site. The trained networks are used for both single step ahead and multiple step ahead forecasting. A comparative study of both networks indicates that the recurrent neural networks performed better than the feed forward networks. In addition, the size of the architecture and the training time required were less for the recurrent neural networks. The recurrent neural network gave better results for both single step ahead and multiple step ahead forecasting. Hence recurrent neural networks are recommended as a tool for river flow forecasting. Copyright Kluwer Academic Publishers 2004
Suggested Citation
D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004.
"River Flow Forecasting using Recurrent Neural Networks,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
Handle:
RePEc:spr:waterr:v:18:y:2004:i:2:p:143-161
DOI: 10.1023/B:WARM.0000024727.94701.12
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:18:y:2004:i:2:p:143-161. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.