IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i11p3209-3230.html
   My bibliography  Save this article

An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of a Semi-arid Aquifer in Morocco

Author

Listed:
  • Michel Le Page
  • B. Berjamy
  • Y. Fakir
  • F. Bourgin
  • L. Jarlan
  • A. Abourida
  • M. Benrhanem
  • G. Jacob
  • M. Huber
  • F. Sghrer
  • V. Simonneaux
  • G. Chehbouni

Abstract

A Decision Support System has been set up as the result of a fruitful cooperation between several public and research institutions in the framework of a large cooperation program. The DSS aims to compare spatially and temporally sectorial water demands of the Haouz-Mejjate plain (Morocco) in regard to available surface and groundwater resources. It is composed of a tool for satellite estimation of Agricultural Water Demand (SAMIR), a tool for integrated water resources planning (WEAP) and a groundwater model (MODFLOW) each of them relying on a common Geographical Information System not described here. The DSS is operating on a monthly time scale. Agricultural water demand accounts for about 80 % of the total demand. In areas where groundwater abstraction is difficult to quantify by direct methods, multitemporal remote sensing associated to the FAO methodology is a simple and efficient alternative to estimate Evapotranspiration (ET). In this work, a monthly estimate of ET from irrigated areas is derived from freely available MODIS NDVI for the 2001–2009 period. An important part of the paper deals with the validation of these estimates with eddy covariance flux measurements installed on different irrigated crops of the region. Results are satisfactory with a minus 6.5 % error per year on the monthly time scale. This preprocessing allows to dichotomize irrigated versus non-irrigated areas, and then, to estimate groundwater abstraction in subareas distinguishing by their operating modes: traditional, dam or privately irrigated. A dynamic linkage between MODFLOW and WEAP transfers the results of one model as input data to the other. The model restitutes both spatial and temporal variations in head charges and allows the calculation of the ground water balance. After calibration, piezometric validation is acceptable for the majority of the 21 head control points. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Michel Le Page & B. Berjamy & Y. Fakir & F. Bourgin & L. Jarlan & A. Abourida & M. Benrhanem & G. Jacob & M. Huber & F. Sghrer & V. Simonneaux & G. Chehbouni, 2012. "An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of a Semi-arid Aquifer in Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3209-3230, September.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:11:p:3209-3230
    DOI: 10.1007/s11269-012-0068-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0068-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0068-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchemin, B. & Hadria, R. & Erraki, S. & Boulet, G. & Maisongrande, P. & Chehbouni, A. & Escadafal, R. & Ezzahar, J. & Hoedjes, J.C.B. & Kharrou, M.H. & Khabba, S. & Mougenot, B. & Olioso, A. & Rodrig, 2006. "Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices," Agricultural Water Management, Elsevier, vol. 79(1), pages 1-27, January.
    2. Ezzahar, J. & Chehbouni, A. & Hoedjes, J.C.B. & Er-Raki, S. & Chehbouni, Ah. & Boulet, G. & Bonnefond, J.-M. & De Bruin, H.A.R., 2007. "The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 89(3), pages 173-184, May.
    3. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    4. Jeniffer Mutiga & Shadrack Mavengano & Su Zhongbo & Tsehaie Woldai & Robert Becht, 2010. "Water Allocation as a Planning Tool to Minimise Water Use Conflicts in the Upper Ewaso Ng’iro North Basin, Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3939-3959, November.
    5. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    6. Er-Raki, S. & Chehbouni, A. & Guemouria, N. & Duchemin, B. & Ezzahar, J. & Hadria, R., 2007. "Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region," Agricultural Water Management, Elsevier, vol. 87(1), pages 41-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Rick Hogeboom & Pieter Oel & Maarten Krol & Martijn Booij, 2015. "Modelling the Influence of Groundwater Abstractions on the Water Level of Lake Naivasha, Kenya Under Data-Scarce Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4447-4463, September.
    3. Q. Ma & M. Abily & M. Du & P. Gourbesville & Oliver Fouché, 2020. "Integrated Groundwater Resources Management: Spatially-Nested Modelling Approach for Water Cycle Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1319-1333, March.
    4. Gaiqiang Yang & Mo Li & Lijuan Huo, 2019. "Decision Support System Based on Queuing Theory to Optimize Canal Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4367-4384, September.
    5. Dehghanipour, Amir Hossein & Zahabiyoun, Bagher & Schoups, Gerrit & Babazadeh, Hossein, 2019. "A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Deb Kumar Maity & Sujit Mandal, 2019. "Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 1013-1034, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    3. Er-Raki, S. & Rodriguez, J.C. & Garatuza-Payan, J. & Watts, C.J. & Chehbouni, A., 2013. "Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index," Agricultural Water Management, Elsevier, vol. 122(C), pages 12-19.
    4. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    5. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    6. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    8. Hadria, R. & Duchemin, B. & Baup, F. & Le Toan, T. & Bouvet, A. & Dedieu, G. & Le Page, M., 2009. "Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco," Agricultural Water Management, Elsevier, vol. 96(7), pages 1120-1127, July.
    9. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    10. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    12. Sara, Ourrai & Bouchra, Aithssaine & Abdelhakim, Amazirh & Salah, Er-RAKI & Lhoussaine, Bouchaou & Frederic, Jacob & Abdelghani, Chehbouni, 2024. "Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco," Agricultural Water Management, Elsevier, vol. 298(C).
    13. Diarra, A. & Jarlan, L. & Er-Raki, S. & Le Page, M. & Aouade, G. & Tavernier, A. & Boulet, G. & Ezzahar, J. & Merlin, O. & Khabba, S., 2017. "Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa," Agricultural Water Management, Elsevier, vol. 193(C), pages 71-88.
    14. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    15. Behnam Sadeghi & Mahmoud Ahmadpour Borazjani & Mostafa Mardani & Saman Ziaee & Hamid Mohammadi, 2023. "Systemic Management of Water Resources with Environmental and Climate Change Considerations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2543-2574, May.
    16. Er-Raki, S. & Chehbouni, A. & Hoedjes, J. & Ezzahar, J. & Duchemin, B. & Jacob, F., 2008. "Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET," Agricultural Water Management, Elsevier, vol. 95(3), pages 309-321, March.
    17. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    18. Campos, Isidro & Neale, Christopher M.U. & Calera, Alfonso & Balbontín, Claudio & González-Piqueras, Jose, 2010. "Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 45-54, December.
    19. March, Hug & Therond, Olivier & Leenhardt, Delphine, 2012. "Water futures: Reviewing water-scenario analyses through an original interpretative framework," Ecological Economics, Elsevier, vol. 82(C), pages 126-137.
    20. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:11:p:3209-3230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.