IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i12p4447-4463.html
   My bibliography  Save this article

Modelling the Influence of Groundwater Abstractions on the Water Level of Lake Naivasha, Kenya Under Data-Scarce Conditions

Author

Listed:
  • Rick Hogeboom
  • Pieter Oel
  • Maarten Krol
  • Martijn Booij

Abstract

This study presents the state-of-the-art understanding of the data-scarce and hydrogeologically complex groundwater system of Lake Naivasha, Kenya, with the particular aim of exploring the influence groundwater abstractions have on Lake Naivasha’s water level. We developed multiple alternative but plausible parameterizations for a MODFLOW groundwater model, based on literature, existing models and available data, while trying not to over-complicate the model. In doing so, we illustrate a possible strategy of going about data-scarce regions in modelling in general. Processes encountered in the calibrated parameterizations show groundwater flows laterally from the escarpments to the valley floor and axially from the lake along the Rift, with a larger portion flowing out southward than northward. Extraction of groundwater interrupts the flow from the northwestern highlands to the lake, leading to a lake stage reduction of 0.7–7.5 cm due to abstractions at our target farm (Flower Business Park) or an implied 7–75 cm due to total groundwater abstractions in the area. Although this study demonstrates our understanding of Naivasha’s groundwater system remains fragile and the current model cannot be embedded in operational water management yet, it (i) reflects the contemporary understanding of the local groundwater system, (ii) illustrates how to go about modelling in data-scarce environments and (iii) provides a means to assess focal areas for future data collection and model improvements. Copyright The Author(s) 2015

Suggested Citation

  • Rick Hogeboom & Pieter Oel & Maarten Krol & Martijn Booij, 2015. "Modelling the Influence of Groundwater Abstractions on the Water Level of Lake Naivasha, Kenya Under Data-Scarce Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4447-4463, September.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4447-4463
    DOI: 10.1007/s11269-015-1069-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1069-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1069-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Le Page & B. Berjamy & Y. Fakir & F. Bourgin & L. Jarlan & A. Abourida & M. Benrhanem & G. Jacob & M. Huber & F. Sghrer & V. Simonneaux & G. Chehbouni, 2012. "An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of a Semi-arid Aquifer in Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3209-3230, September.
    2. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    3. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    4. Slim Zekri & Chefi Triki & Ali Al-Maktoumi & Mohammad Bazargan-Lari, 2015. "An Optimization-Simulation Approach for Groundwater Abstraction under Recharge Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3681-3695, August.
    5. Dirk Verschuren & Kathleen R. Laird & Brian F. Cumming, 2000. "Rainfall and drought in equatorial east Africa during the past 1,100 years," Nature, Nature, vol. 403(6768), pages 410-414, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    2. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    3. Tsegaye Tadesse & Menghestab Haile & Gabriel Senay & Brian D. Wardlow & Cody L. Knutson, 2008. "The need for integration of drought monitoring tools for proactive food security management in sub‐Saharan Africa," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 265-279, November.
    4. Helge Bormann & Oliver Caspari, 2015. "On the Value of Hydrological Models Developed in the Context of Undergraduate Education for Discharge Prediction and Reservoir Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3569-3584, August.
    5. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    6. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    8. Zekri, S., 2018. "Optimizing aquifer recharge and recovery using seasonal surplus desalinated water," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276946, International Association of Agricultural Economists.
    9. Marye Belete & Jinsong Deng & Mengmeng Zhou & Ke Wang & Shixue You & Yang Hong & Melanie Weston, 2018. "A New Approach to Modeling Water Balance in Nile River Basin, Africa," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    10. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Chefi Triki & Slim Zekri & Ali Al-Maktoumi & Mahsa Fallahnia, 2017. "An Artificial Intelligence Approach for the Stochastic Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4925-4939, December.
    12. B. François & B. Hingray & J. Creutin & F. Hendrickx, 2015. "Estimating Water System Performance Under Climate Change: Influence of the Management Strategy Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4903-4918, October.
    13. L. Feng & C. Huang, 2008. "A Risk Assessment Model of Water Shortage Based on Information Diffusion Technology and its Application in Analyzing Carrying Capacity of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 621-633, May.
    14. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    15. Deb Kumar Maity & Sujit Mandal, 2019. "Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 1013-1034, April.
    16. Gaiqiang Yang & Mo Li & Lijuan Huo, 2019. "Decision Support System Based on Queuing Theory to Optimize Canal Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4367-4384, September.
    17. Triptimoni Borah & Rajib Kumar Bhattacharjya, 2016. "Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-Optimization Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5163-5176, November.
    18. M. Calvache & J. Sánchez-Úbeda & C. Duque & M. López-Chicano & B. Torre, 2016. "Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 559-575, January.
    19. Dehghanipour, Amir Hossein & Zahabiyoun, Bagher & Schoups, Gerrit & Babazadeh, Hossein, 2019. "A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. Smail, Robert & Nocco, Mallika & Colquhoun, Jed & Wang, Yi, 2021. "Remotely-sensed water budgets for agriculture in the upper midwestern United States," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4447-4463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.