IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p810-d136295.html
   My bibliography  Save this article

A New Approach to Modeling Water Balance in Nile River Basin, Africa

Author

Listed:
  • Marye Belete

    (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
    Agriculture and Environmental Sciences Faculty, Debre Tabor University, Debre Tabor 272, Ethiopia)

  • Jinsong Deng

    (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
    School of Civil Engineering and Environmental Sciences and School of Meteorology, University of Oklahoma, Norman, OK 73019, USA)

  • Mengmeng Zhou

    (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Ke Wang

    (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Shixue You

    (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Yang Hong

    (School of Civil Engineering and Environmental Sciences and School of Meteorology, University of Oklahoma, Norman, OK 73019, USA
    State Key Laboratory of Hydro Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China)

  • Melanie Weston

    (College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

Abstract

The demand for calculating and mapping water yield is increasing for inaccessible locations or areas of conflict to support decision makers. Integrated Valuation of Environmental Services and Tradeoffs (InVEST) was applied to simulate basin hydrology. InVEST is becoming popular in the water modeling community due to its low requirements for input information, level of skill and model setup is available to the public domain. Estimation and mapping of water production, evapotranspiration and precipitation of the Nile River Basin have been performed by using open access data. This study utilized climate, soil and land use related data to model the key components of the water balance in the study region. Maps of the key parts of water balance were also produced. The spatial patterns of precipitation, actual evapotranspiration and water yield show sharp decline from south to northern part of the study basin while actual evapotranspiration fraction happens to the opposite. Our analysis confirms the ability of the InVEST water yield model to estimate water production capacity of a different part of a basin without flow meters.

Suggested Citation

  • Marye Belete & Jinsong Deng & Mengmeng Zhou & Ke Wang & Shixue You & Yang Hong & Melanie Weston, 2018. "A New Approach to Modeling Water Balance in Nile River Basin, Africa," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:810-:d:136295
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    2. Kirby, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Volta Basin," IWMI Working Papers H042842, International Water Management Institute.
    3. Willcock, Simon & Hooftman, Danny & Sitas, Nadia & O’Farrell, Patrick & Hudson, Malcolm D. & Reyers, Belinda & Eigenbrod, Felix & Bullock, James M., 2016. "Do ecosystem service maps and models meet stakeholders’ needs? A preliminary survey across sub-Saharan Africa," Ecosystem Services, Elsevier, vol. 18(C), pages 110-117.
    4. Mainuddin, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Limpopo Basin," IWMI Working Papers H042844, International Water Management Institute.
    5. Kirby, M., 2010. "Water-use accounts in CPWF basins Simple water-use accounting of the Nile Basin," IWMI Working Papers H042841, International Water Management Institute.
    6. Mainuddin, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Niger Basin," IWMI Working Papers H042847, International Water Management Institute.
    7. Awulachew, Seleshi Bekele, 2008. "A review of hydrology, sediment and water resource use in the Blue Nile Basin," IWMI Working Papers H041833, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Caroline King-Okumu, 2018. "Valuing Environmental Benefit Streams in the Dryland Ecosystems of Sub-Saharan Africa," Land, MDPI, vol. 7(4), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnston, Robyn & Hoanh, Chu Thai & Lacombe, Guillaume & Lefroy, R. & Pavelic, Paul & Fry, Carolyn., 2012. "Managing water in rainfed agriculture in the Greater Mekong Subregion. Final report prepared by IWMI for Swedish International Development Cooperation Agency (Sida)," IWMI Research Reports H044646, International Water Management Institute.
    2. Pandeya, B. & Mulligan, M., 2013. "Modelling crop evapotranspiration and potential impacts on future water availability in the Indo-Gangetic Basin," Agricultural Water Management, Elsevier, vol. 129(C), pages 163-172.
    3. Kirby, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Mekong Basin," IWMI Working Papers H042840, International Water Management Institute.
    4. Eastham, J., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Sao Francisco Basin," IWMI Working Papers H042848, International Water Management Institute.
    5. Mainuddin, M. & Hoanh, Chu Thai & Jirayoot, K. & Halls, A. S. & Kirby, M. & Lacombe, Guillaume & Srinetr, V., 2010. "Adaptation options to reduce the vulnerability of Mekong water resources, food security and the environment to impacts of development and climate change. Report to AusAID," IWMI Research Reports H043268, International Water Management Institute.
    6. Kirby, M., 2010. "Water-use accounts in CPWF basins Simple water-use accounting of the Nile Basin," IWMI Working Papers H042841, International Water Management Institute.
    7. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    8. Mainuddin, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Niger Basin," IWMI Working Papers H042847, International Water Management Institute.
    9. Dickens, Chris & O'Brien, G. & Magombeyi, Manuel & Mukuyu, Patience & Ndlovu, B. & Eriyagama, Nishadi & Kleynhans, N., 2020. "E-flows for the Limpopo River Basin: basin report. Project report prepared by the International Water Management Institute (IWMI) for the United States Agency for International Development (USAID)," IWMI Reports 337110, International Water Management Institute.
    10. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    11. Helge Bormann & Oliver Caspari, 2015. "On the Value of Hydrological Models Developed in the Context of Undergraduate Education for Discharge Prediction and Reservoir Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3569-3584, August.
    12. Habtamu Tilahun Kassahun & Bo Jellesmark Thorsen & Joffre Swait & Jette Bredahl Jacobsen, 2020. "Social Cooperation in the Context of Integrated Private and Common Land Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 105-136, January.
    13. Burdon, D. & Potts, T. & McKinley, E. & Lew, S. & Shilland, R. & Gormley, K. & Thomson, S. & Forster, R., 2019. "Expanding the role of participatory mapping to assess ecosystem service provision in local coastal environments," Ecosystem Services, Elsevier, vol. 39(C).
    14. Abebaw Andarge Gedefaw & Clement Atzberger & Thomas Bauer & Sayeh Kassaw Agegnehu & Reinfried Mansberger, 2020. "Analysis of Land Cover Change Detection in Gozamin District, Ethiopia: From Remote Sensing and DPSIR Perspectives," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    15. B. François & B. Hingray & J. Creutin & F. Hendrickx, 2015. "Estimating Water System Performance Under Climate Change: Influence of the Management Strategy Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4903-4918, October.
    16. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    17. Rick Hogeboom & Pieter Oel & Maarten Krol & Martijn Booij, 2015. "Modelling the Influence of Groundwater Abstractions on the Water Level of Lake Naivasha, Kenya Under Data-Scarce Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4447-4463, September.
    18. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    19. Abera, Wuletawu & Tamene, Lulseged & Kassawmar, Tibebu & Mulatu, Kalkidan & Kassa, Habtemariam & Verchot, Louis & Quintero, Marcela, 2021. "Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia," Ecosystem Services, Elsevier, vol. 50(C).
    20. Zapata-Caldas, Emmanuel & Calcagni, Fulvia & Baró, Francesc & Langemeyer, Johannes, 2022. "Using crowdsourced imagery to assess cultural ecosystem services in data-scarce urban contexts: The case of the metropolitan area of Cali, Colombia," Ecosystem Services, Elsevier, vol. 56(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:810-:d:136295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.