IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i9p2319-2334.html
   My bibliography  Save this article

Monitoring and Assessment of Surface Water Abstractions for Pasture Irrigation from Landsat Imagery: Bega–Bemboka River, NSW, Australia

Author

Listed:
  • Ivars Reinfelds

Abstract

Irrigation of pasture forms the greatest single use of irrigation water in Australia yet there has been little monitoring of its spatial extent and water demands across southeast Australian coastal catchments where irrigated dairy farming forms an important rural livelihood. This paper provides an analysis of spatio-temporal patterns in the extent of irrigated pasture in the Bega–Bemboka catchment on the south coast of New South Wales from Landsat imagery, and establishes quantile regression relationships between metered monthly irrigation abstraction volumes, evaporation and rainfall. Over the metering period (2000–2007), annual water usage averages 4.8 ML ha − 1 year − 1 , with January being the month of highest demand with an annualised usage of 10.4 ML ha − 1 year − 1 . Analysis of Landsat imagery indicates that the spatial extent of irrigated pasture across the catchment has increased from 1266 ha in 1983 to 1842 ha by 2002, together with amalgamation of smaller holdings along less reliable streams into larger parcels along the trunk stream. Quantile regressions to estimate monthly mean and maximum abstraction volumes from monthly evaporation and rainfall data indicate that abstraction volumes are more closely correlated with evaporation. When combined with Landsat analyses of the spatial extent of irrigated areas, such relationships enable estimation of catchment-scale hydrological effects of irrigation abstractions that in turn can help guide regional-scale assessments of the ecological effects and sustainability of spatially and temporally changing irrigation abstraction volumes. Copyright Her Majesty the Queen in Right of Australia 2011

Suggested Citation

  • Ivars Reinfelds, 2011. "Monitoring and Assessment of Surface Water Abstractions for Pasture Irrigation from Landsat Imagery: Bega–Bemboka River, NSW, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2319-2334, July.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:9:p:2319-2334
    DOI: 10.1007/s11269-011-9810-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9810-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9810-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poussin, J.C. & Imache, A. & Beji, R. & Le Grusse, P. & Benmihoub, A., 2008. "Exploring regional irrigation water demand using typologies of farms and production units: An example from Tunisia," Agricultural Water Management, Elsevier, vol. 95(8), pages 973-983, August.
    2. Heinemann, A. B. & Hoogenboom, G. & de Faria, R. T., 2002. "Determination of spatial water requirements at county and regional levels using crop models and GIS: An example for the State of Parana, Brazil," Agricultural Water Management, Elsevier, vol. 52(3), pages 177-196, January.
    3. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    4. Raffaele Casa & Matteo Rossi & Giuseppe Sappa & Antonio Trotta, 2009. "Assessing Crop Water Demand by Remote Sensing and GIS for the Pontina Plain, Central Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1685-1712, July.
    5. Mutlu Ozdogan & Curtis Woodcock & Guido Salvucci & Hüseyin Demir, 2006. "Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 467-488, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    2. Rinaudo, Jean-Daniel & Maton, Laure & Terrason, Isabelle & Chazot, Sébastien & Richard-Ferroudji, Audrey & Caballero, Yvan, 2013. "Combining scenario workshops with modeling to assess future irrigation water demands," Agricultural Water Management, Elsevier, vol. 130(C), pages 103-112.
    3. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    4. P. Gupta & S. Dutta & S. Panigrahy, 2010. "Mapping of Conjunctive Water Use Productivity Pattern in an Irrigation Command Using Temporal IRS WiFS Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 157-171, January.
    5. Shumin Han & Qiuli Hu & Yonghui Yang & Jiusheng Wang & Ping Wang & Quan Wang, 2015. "Characteristics and Driving Factors of Drainage Water in Irrigation Districts in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5323-5337, November.
    6. Yi Cai & Yasuhiro Mitani & Hiro Ikemi & Shuguang Liu, 2012. "Effect of Precipitation Timescale Selection on Tempo-spatial Assessment of Paddy Water Demand in Chikugo-Saga Plain, Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1731-1746, April.
    7. Corbari, Chiara & Salerno, Raffaele & Ceppi, Alessandro & Telesca, Vito & Mancini, Marco, 2019. "Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling," Agricultural Water Management, Elsevier, vol. 212(C), pages 283-294.
    8. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2013. "Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2089-2101, May.
    9. Leenhardt, D. & Trouvat, J. -L. & Gonzales, G. & Perarnaud, V. & Prats, S. & Bergez, J. -E., 2004. "Estimating irrigation demand for water management on a regional scale: I. ADEAUMIS, a simulation platform based on bio-decisional modelling and spatial information," Agricultural Water Management, Elsevier, vol. 68(3), pages 207-232, August.
    10. Songjun Han & Di Xu & Zhiyong Yang, 2017. "Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving?," Sustainability, MDPI, vol. 9(9), pages 1-12, August.
    11. Zhang, Chao & Dong, Jinwei & Zuo, Lijun & Ge, Quansheng, 2022. "Tracking spatiotemporal dynamics of irrigated croplands in China from 2000 to 2019 through the synergy of remote sensing, statistics, and historical irrigation datasets," Agricultural Water Management, Elsevier, vol. 263(C).
    12. R. Mazza & F. La Vigna & C. Alimonti, 2014. "Evaluating the Available Regional Groundwater Resources Using the Distributed Hydrogeological Budget," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 749-765, February.
    13. Samanpreet Kaur & Rajan Aggarwal & S Jalota & Bharat Vashisht & Prit Lubana, 2014. "Estimation of Groundwater Balance Using Soil-Water-Vegetation Model and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4359-4371, September.
    14. Lucie Clavel & Marie-Hélène Charron & Olivier Therond & Delphine Leenhardt, 2012. "A Modelling Solution for Developing and Evaluating Agricultural Land-Use Scenarios in Water Scarcity Contexts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2625-2641, July.
    15. Lazar Segal & Leonid Burstein, 2010. "Retardation of Water Evaporation by a Protective Float," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 129-137, January.
    16. Lorite, I.J. & Mateos, L. & Orgaz, F. & Fereres, E., 2007. "Assessing deficit irrigation strategies at the level of an irrigation district," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 51-60, July.
    17. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    18. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    19. Claudia Giardino & Mariano Bresciani & Paolo Villa & Angiolo Martinelli, 2010. "Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3885-3899, November.
    20. Poussin, J.C. & Imache, A. & Beji, R. & Le Grusse, P. & Benmihoub, A., 2008. "Exploring regional irrigation water demand using typologies of farms and production units: An example from Tunisia," Agricultural Water Management, Elsevier, vol. 95(8), pages 973-983, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:9:p:2319-2334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.