IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i3p749-765.html
   My bibliography  Save this article

Evaluating the Available Regional Groundwater Resources Using the Distributed Hydrogeological Budget

Author

Listed:
  • R. Mazza
  • F. La Vigna
  • C. Alimonti

Abstract

In this study, several hydrogeological catchments of Central Italy have been characterized focusing the attention on the presence of areas in which, over the last two decades, the hydrological equilibrium between recharge and discharge (phenomena of marked reduction of spring discharge and progressive drawdown of groundwater levels) has been compromised by overexploitation of groundwater resources. A GIS system has been used in order to develop the study and the homogenous distribution of the hydrological knowledge and of the existing imbalances has been performed. Characterizing elements of the research are: a) the definition of the hydrogeological units; b) the hydrogeological survey of around a thousand water-points; c) the monthly analysis of climatic data of numerous survey stations; d) the census and the recording of water concessions; e) the evaluation of agriculture hydro-exigency derived from the analysis of the use of soil; f) the withdrawals defined by a statistic analysis of data. These elements have allowed to define the Distributed Hydrogeological Budget which is a useful instrument to evaluate critical areas. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • R. Mazza & F. La Vigna & C. Alimonti, 2014. "Evaluating the Available Regional Groundwater Resources Using the Distributed Hydrogeological Budget," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 749-765, February.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:3:p:749-765
    DOI: 10.1007/s11269-014-0513-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0513-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0513-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larry Mays, 2013. "Groundwater Resources Sustainability: Past, Present, and Future," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4409-4424, October.
    2. Yohannes Yihdego & John Webb, 2013. "An Empirical Water Budget Model As a Tool to Identify the Impact of Land-use Change in Stream Flow in Southeastern Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4941-4958, November.
    3. Fakhri Manghi & Behrooz Mortazavi & Christie Crother & Moshrik Hamdi, 2009. "Estimating Regional Groundwater Recharge Using a Hydrological Budget Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2475-2489, September.
    4. A. Calderhead & R Martel & J. Garfias & A. Rivera & R. Therrien, 2012. "Sustainable Management for Minimizing Land Subsidence of an Over-Pumped Volcanic Aquifer System: Tools for Policy Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1847-1864, May.
    5. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    6. Jin-Fa Chen & Cheng-Haw Lee & Tian-Chyi Yeh & Jin-Li Yu, 2005. "A Water Budget Model for the Yun-Lin Plain, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 483-504, October.
    7. A. Jasrotia & Abinash Majhi & Sunil Singh, 2009. "Water Balance Approach for Rainwater Harvesting using Remote Sensing and GIS Techniques, Jammu Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3035-3055, November.
    8. P. Sidiropoulos & N. Mylopoulos & A. Loukas, 2013. "Optimal Management of an Overexploited Aquifer under Climate Change: The Lake Karla Case," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1635-1649, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Alimonti & Mara Lombardi, 2015. "Reliability Analysis for Preliminary Forecasts of Hydrogeological Unit Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3771-3785, August.
    2. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    3. Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
    4. Asad Qureshi & Zia Ahmad & Timothy Krupnik, 2015. "Moving from Resource Development to Resource Management: Problems, Prospects and Policy Recommendations for Sustainable Groundwater Management in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4269-4283, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad Qureshi & Zia Ahmad & Timothy Krupnik, 2015. "Moving from Resource Development to Resource Management: Problems, Prospects and Policy Recommendations for Sustainable Groundwater Management in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4269-4283, September.
    2. Mohammad Dastorani & Samaneh Poormohammadi, 2012. "Evaluation of Water Balance in a Mountainous Upland Catchment Using SEBAL Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2069-2080, May.
    3. Samuel Sandoval-Solis & Jose Pablo Ortiz Partida & Lindsay Floyd, 2022. "Multi-Objective Water Planning in a Poor Water Data Region: Aragvi River Basin," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    4. Giuseppe Passarella & Emanuele Barca & Donato Sollitto & Rita Masciale & Delia Evelina Bruno, 2017. "Cross-Calibration of Two Independent Groundwater Balance Models and Evaluation of Unknown Terms: The Case of the Shallow Aquifer of “Tavoliere di Puglia” (South Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 327-340, January.
    5. Changsen Zhao & Bing Shen & Lingmei Huang & Zhidong Lei & Heping Hu & Shixiu Yang, 2009. "A Dissipative Hydrological Model for the Hotan Oasis (DHMHO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1183-1210, April.
    6. Robert L. Oxley & Larry W. Mays & Alan Murray, 2016. "Optimization Model for the Sustainable Water Resource Management of River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3247-3264, July.
    7. A. Alamanos & D. Latinopoulos & G. Papaioannou & N. Mylopoulos, 2019. "Integrated Hydro-Economic Modeling for Sustainable Water Resources Management in Data-Scarce Areas: The Case of Lake Karla Watershed in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2775-2790, June.
    8. Abbas Afshar & Mohamad Amin Tavakoli & Ali Khodagholi, 2020. "Multi-Objective Hydro-Economic Modeling for Sustainable Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1855-1869, April.
    9. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2013. "Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2089-2101, May.
    10. Jean-Daniel Rinaudo & Guillermo Donoso, 2019. "State, market or community failure? Untangling the determinants of groundwater depletion in Copiapó (Chile)," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 35(2), pages 283-304, March.
    11. Wang, Qi & Zhang, Dengkui & Zhou, Xujiao & Mak-Mensah, Erastus & Zhao, Xiaole & Zhao, Wucheng & Wang, Xiaoyun & Stellmach, Dan & Liu, Qinglin & Li, Xiaoling & Li, Guang & Wang, Heling & Zhang, Kai, 2022. "Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Ajay Singh, 2012. "Development and Application of a Watertable Model for the Assessment of Waterlogging in Irrigated Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4435-4448, December.
    13. Cody R. Saville & Gretchen R. Miller & Kelly Brumbelow, 2016. "Using Envision to Assess the Sustainability of Groundwater Infrastructure: A Case Study of the Twin Oaks Aquifer Storage and Recovery Project," Sustainability, MDPI, vol. 8(5), pages 1-15, May.
    14. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    15. James Stoutenborough & Arnold Vedlitz, 2014. "Public Attitudes Toward Water Management and Drought in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 697-714, February.
    16. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    17. Abdessamed Derdour & Hazem Ghassan Abdo & Hussein Almohamad & Abdullah Alodah & Ahmed Abdullah Al Dughairi & Sherif S. M. Ghoneim & Enas Ali, 2023. "Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    18. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    19. Sana’a Al-Zyoud & Wolfram Rühaak & Ehsan Forootan & Ingo Sass, 2015. "Over Exploitation of Groundwater in the Centre of Amman Zarqa Basin—Jordan: Evaluation of Well Data and GRACE Satellite Observations," Resources, MDPI, vol. 4(4), pages 1-12, November.
    20. Shoja Ghorbani Dashtaki & Mehdi Homaee & Mohammad Mahdian & Mehdi Kouchakzadeh, 2009. "Site-Dependence Performance of Infiltration Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2777-2790, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:3:p:749-765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.