IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i12p1835-1857.html
   My bibliography  Save this article

Partially and Fully Constrained Ant Algorithms for the Optimal Solution of Large Scale Reservoir Operation Problems

Author

Listed:
  • M. Afshar
  • R. Moeini

Abstract

This paper presents a constrained formulation of the ant colony optimization algorithm (ACOA) for the optimization of large scale reservoir operation problems. ACO algorithms enjoy a unique feature namely incremental solution building capability. In ACO algorithms, each ant is required to make a decision at some points of the search space called decision points. If the constraints of the problem are of explicit type, then ants may be forced to satisfy the constraints when making decisions. This could be done via the provision of a tabu list for each ant at each decision point of the problem. This is very useful when attempting large scale optimization problem as it would lead to a considerable reduction of the search space size. Two different formulations namely partially constrained and fully constrained version of the proposed method are outlined here using Max-Min Ant System for the solution of reservoir operation problems. Two cases of simple and hydropower reservoir operation problems are considered with the storage volumes taken as the decision variables of the problems. In the partially constrained version of the algorithm, knowing the value of the storage volume at an arbitrary decision point, the continuity equation is used to provide a tabu list for the feasible options at the next decision point. The tabu list is designed such that commonly used box constraints for the release and storage volumes are simultaneously satisfied. In the second and fully constrained algorithm, the box constraints of storage volumes at each period are modified prior to the main calculation such that ants will not have any chance of making infeasible decision in the search process. The proposed methods are used to optimally solve the problem of simple and hydropower operation of “Dez” reservoir in Iran and the results are presented and compared with the conventional unconstrained ACO algorithm. The results indicate the ability of the proposed methods to optimally solve large scale reservoir operation problems where the conventional heuristic methods fail to even find a feasible solution. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • M. Afshar & R. Moeini, 2008. "Partially and Fully Constrained Ant Algorithms for the Optimal Solution of Large Scale Reservoir Operation Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1835-1857, December.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:12:p:1835-1857
    DOI: 10.1007/s11269-008-9256-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9256-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9256-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Kumar & M. Reddy, 2006. "Ant Colony Optimization for Multi-Purpose Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 879-898, December.
    2. D. Kumar & Falguni Baliarsingh, 2003. "Folded Dynamic Programming for Optimal Operation of Multireservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 337-353, October.
    3. Fi-John Chang & Li Chen, 1998. "Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(3), pages 185-198, June.
    4. Omid Haddad & Abbas Afshar & Miguel Mariño, 2006. "Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 661-680, October.
    5. M. Jalali & A. Afshar & M. Mariño, 2007. "Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1429-1447, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    2. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    3. Abbas Afshar & Fariborz Massoumi & Amin Afshar & Miquel Mariño, 2015. "State of the Art Review of Ant Colony Optimization Applications in Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3891-3904, September.
    4. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    5. van Ackere, Ann & Ochoa, Patricia, 2010. "Managing a hydro-energy reservoir: A policy approach," Energy Policy, Elsevier, vol. 38(11), pages 7299-7311, November.
    6. Yong-Gun Kim & Myong-Bong Jo & Pyol Kim & Song-Nam Oh & Chung-Hyok Paek & Sung-Ryol So, 2021. "Effective Optimization-Simulation Model for Flood Control of Cascade Barrage Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 135-157, January.
    7. Amin Afshar & Miguel Mariño, 2012. "Multi-objective Coverage-based ACO Model for Quality Monitoring in Large Water Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2159-2176, June.
    8. Iman Ahmadianfar & Arvin Samadi-Koucheksaraee & Omid Bozorg-Haddad, 2017. "Extracting Optimal Policies of Hydropower Multi-Reservoir Systems Utilizing Enhanced Differential Evolution Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4375-4397, November.
    9. Joao Brandão, 2010. "Performance of the Equivalent Reservoir Modelling Technique for Multi-Reservoir Hydropower Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3101-3114, September.
    10. Sumant Choudhari & P. Anand Raj, 2010. "Multiobjective Multireservoir Operation in Fuzzy Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2057-2073, August.
    11. Sara Azargashb Lord & Seied Mehdy Hashemy Shahdany & Abbas Roozbahani, 2021. "Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 827-846, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    2. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    3. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    4. Iman Ahmadianfar & Arvin Samadi-Koucheksaraee & Omid Bozorg-Haddad, 2017. "Extracting Optimal Policies of Hydropower Multi-Reservoir Systems Utilizing Enhanced Differential Evolution Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4375-4397, November.
    5. Asmadi Ahmad & Ahmed El-Shafie & Siti Razali & Zawawi Mohamad, 2014. "Reservoir Optimization in Water Resources: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3391-3405, September.
    6. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    7. Abbas Afshar & Fariborz Masoumi & Sam Solis, 2015. "Reliability Based Optimum Reservoir Design by Hybrid ACO-LP Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2045-2058, April.
    8. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    9. Bo Ming & Jian-xia Chang & Qiang Huang & Yi-min Wang & Sheng-zhi Huang, 2015. "Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5671-5687, December.
    10. Leila Ostadrahimi & Miguel Mariño & Abbas Afshar, 2012. "Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 407-427, January.
    11. Ahmadianfar, Iman & Kheyrandish, Ali & Jamei, Mehdi & Gharabaghi, Bahram, 2021. "Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm," Renewable Energy, Elsevier, vol. 167(C), pages 774-790.
    12. Omid Bozorg-Haddad & Mahboubeh Zarezadeh-Mehrizi & Mehri Abdi-Dehkordi & Hugo A. Loáiciga & Miguel A. Mariño, 2016. "A self-tuning ANN model for simulation and forecasting of surface flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2907-2929, July.
    13. Abbas Afshar & Nasim Shojaei & Mahdi Sagharjooghifarahani, 2013. "Multiobjective Calibration of Reservoir Water Quality Modeling Using Multiobjective Particle Swarm Optimization (MOPSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1931-1947, May.
    14. S. Madadgar & A. Afshar, 2009. "An Improved Continuous Ant Algorithm for Optimization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2119-2139, August.
    15. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    16. Alireza B. Dariane & M. M. Javadianzadeh & L. Douglas James, 2016. "Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1923-1937, April.
    17. K. Ramakrishnan & C. Suribabu & T. Neelakantan, 2010. "Crop Calendar Adjustment Study for Sathanur Irrigation System in India Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3835-3851, November.
    18. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    19. Chen, Qiuwen & Chen, Duan & Li, Ruonan & Ma, Jinfeng & Blanckaert, Koen, 2013. "Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations," Ecological Modelling, Elsevier, vol. 252(C), pages 266-272.
    20. A. Dariane & S. Sarani, 2013. "Application of Intelligent Water Drops Algorithm in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4827-4843, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:12:p:1835-1857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.