IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i4d10.1007_s11749-018-0619-x.html
   My bibliography  Save this article

Process modeling for slope and aspect with application to elevation data maps

Author

Listed:
  • Fangpo Wang

    () (Adobe Inc.)

  • Anirban Bhattacharya

    () (Texas A&M University)

  • Alan E. Gelfand

    () (Duke University)

Abstract

Abstract Learning about the behavior of land surface gradients and, in particular, slope and aspect over a region from a dataset of levels obtained at a set of (possibly) irregularly spaced locations assumes importance in a variety of applications. A primary example considers digital terrain models for exploring roughness of land surfaces. In a geographic information system software package, gradient information is typically extracted from a digital elevation/terrain model (DEM/DTM), which usually presents the topography of the surface in terms of a set of pre-specified regular grid points, each with an assigned elevation value. That is, the DEM arises from preprocessing of an originally irregularly spaced set of elevation observations. Slope in one dimension is defined as “rise over run”. However, in two dimensions, at a given location, there is a rise over run in every direction. Then, the slope at the location is customarily taken as the maximum slope over all directions. It can be expressed as an angle whose tangent is the ratio of the rise to the run at the maximum. In practice, at each point of the grid, rise/run is obtained through comparison of the elevation at the point to that of a set of neighboring grid points, usually the eight compass neighbors, to find the maximum. Aspect is defined as the angular direction of maximum slope over the compass neighbors. We present a fully model-based approach for inference regarding slope and aspect. In particular, we define process versions of the slope and aspect over a continuous spatial domain. Modeling slopes takes us to directional derivative processes; modeling angles takes us to spatial processes for angular data. Using a stationary Gaussian process model for the elevation data, we obtain distribution theory for slope and associated aspect as well as covariance structure. Hierarchical models emerge; fitting in a Bayesian framework enables attachment of uncertainty. We illustrate with both a simulation example and a real data example using elevations from a collection of monitoring station locations in South Africa.

Suggested Citation

  • Fangpo Wang & Anirban Bhattacharya & Alan E. Gelfand, 2018. "Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 749-772, December.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:4:d:10.1007_s11749-018-0619-x
    DOI: 10.1007/s11749-018-0619-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-018-0619-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    2. Finley, Andrew O. & Banerjee, Sudipto & Carlin, Bradley P., 2007. "spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i04).
    3. Fangpo Wang & Alan E. Gelfand, 2014. "Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1565-1580, December.
    4. repec:jss:jstsof:v:071:i09 is not listed on IDEAS
    5. Alan E. Gelfand & Alexandra M. Schmidt & Shanshan Wu & John A. Silander & Andrew Latimer & Anthony G. Rebelo, 2005. "Modelling species diversity through species level hierarchical modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 1-20, January.
    6. Majumdar, Anandamayee & Munneke, Henry J. & Gelfand, Alan E. & Banerjee, Sudipto & Sirmans, C.F., 2006. "Gradients in Spatial Response Surfaces With Application to Urban Land Values," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 77-90, January.
    7. Harrison Quick & Sudipto Banerjee & Bradley P. Carlin, 2015. "Bayesian modeling and analysis for gradients in spatiotemporal processes," Biometrics, The International Biometric Society, vol. 71(3), pages 575-584, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:4:d:10.1007_s11749-018-0619-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Mallaigh Nolan). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.