IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i1d10.1007_s00362-021-01228-1.html
   My bibliography  Save this article

On nonparametric regression for bivariate circular long-memory time series

Author

Listed:
  • Jan Beran

    (University of Konstanz)

  • Britta Steffens

    (University of Konstanz)

  • Sucharita Ghosh

    (Swiss Federal Research Institute WSL)

Abstract

We consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.

Suggested Citation

  • Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:1:d:10.1007_s00362-021-01228-1
    DOI: 10.1007/s00362-021-01228-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01228-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01228-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    2. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Danny Modlin & Montserrat Fuentes & Brian Reich, 2012. "Circular conditional autoregressive modeling of vector fields," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 46-53, February.
    3. Fangpo Wang & Alan E. Gelfand, 2014. "Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1565-1580, December.
    4. Macro Di Marzio & Agnese Panzera & Charles C. Taylor, 2012. "Non-parametric smoothing and prediction for nonlinear circular time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(4), pages 620-630, July.
    5. Tsuruta, Yasuhito & Sagae, Masahiko, 2017. "Higher order kernel density estimation on the circle," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 46-50.
    6. Taylor, Charles C., 2008. "Automatic bandwidth selection for circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3493-3500, March.
    7. Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
    8. Robert, Christian, 1990. "Modified Bessel functions and their applications in probability and statistics," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 155-161, February.
    9. Bai, Z. D. & Rao, C. Radhakrishna & Zhao, L. C., 1988. "Kernel estimators of density function of directional data," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 24-39, October.
    10. Yasuhito Tsuruta & Masahiko Sagae, 2020. "Theoretical properties of bandwidth selectors for kernel density estimation on the circle," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 511-530, April.
    11. Shogo Kato, 2010. "A Markov process for circular data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 655-672, November.
    12. Hankin, Robin K. S., 2015. "Circular Statistics in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(b05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Jan Beran & Sucharita Ghosh, 2020. "Estimating the Mean Direction of Strongly Dependent Circular Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 210-228, March.
    3. Yasuhito Tsuruta & Masahiko Sagae, 2023. "Automatic data-based bin width selection for rose diagram," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 855-886, October.
    4. Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
    5. Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.
    6. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    7. Xiaoping Zhan & Tiefeng Ma & Shuangzhe Liu & Kunio Shimizu, 2018. "Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 410-425, September.
    8. Aboubacar Amiri & Baba Thiam & Thomas Verdebout, 2017. "On the Estimation of the Density of a Directional Data Stream," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 249-267, March.
    9. Mercedes Fernandez Sau & Daniela Rodriguez, 2018. "Minimum distance method for directional data and outlier detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 587-603, September.
    10. Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
    11. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    12. Ozcan, Mustafa, 2018. "The role of renewables in increasing Turkey's self-sufficiency in electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2629-2639.
    13. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    14. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    15. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    16. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    17. Andrés Martín & Ernesto Estrada, 2023. "Fractional-Modified Bessel Function of the First Kind of Integer Order," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
    18. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    19. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    20. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:1:d:10.1007_s00362-021-01228-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.