IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i2d10.1007_s00362-023-01420-5.html
   My bibliography  Save this article

Nonparametric estimation for a functional-circular regression model

Author

Listed:
  • Andrea Meilán-Vila

    (Universidad Carlos III de Madrid)

  • Rosa M. Crujeiras

    (Universidade de Santiago de Compostela)

  • Mario Francisco-Fernández

    (Universidade da Coruña. CITIC)

Abstract

Changes on temperature patterns, on a local scale, are perceived by individuals as the most direct indicators of global warming and climate change. As a specific example, for an Atlantic climate location, spring and fall seasons should present a mild transition between winter and summer, and summer and winter, respectively. By observing daily temperature curves along time, being each curve attached to a certain calendar day, a regression model for these variables (temperature curve as covariate and calendar day as response) would be useful for modeling their relation for a certain period. In addition, temperature changes could be assessed by prediction and observation comparisons in the long run. Such a model is presented and studied in this work, considering a nonparametric Nadaraya–Watson-type estimator for functional covariate and circular response. The asymptotic bias and variance of this estimator, as well as its asymptotic distribution are derived. Its finite sample performance is evaluated in a simulation study and the proposal is applied to investigate a real-data set concerning temperature curves.

Suggested Citation

  • Andrea Meilán-Vila & Rosa M. Crujeiras & Mario Francisco-Fernández, 2024. "Nonparametric estimation for a functional-circular regression model," Statistical Papers, Springer, vol. 65(2), pages 945-974, April.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01420-5
    DOI: 10.1007/s00362-023-01420-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01420-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01420-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. Peter D. Howe, 2018. "Perceptions of seasonal weather are linked to beliefs about global climate change: evidence from Norway," Climatic Change, Springer, vol. 148(4), pages 467-480, June.
    3. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    5. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    6. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    7. Andrea Taylor & Wändi Bruine de Bruin & Suraje Dessai, 2014. "Climate Change Beliefs and Perceptions of Weather‐Related Changes in the United Kingdom," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 1995-2004, November.
    8. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2013. "Non-parametric Regression for Circular Responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 238-255, June.
    9. Germán Aneiros‐Pérez & Ricardo Cao & Juan M. Vilar‐Fernández, 2011. "Functional methods for time series prediction: a nonparametric approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 377-392, July.
    10. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    11. Macro Di Marzio & Agnese Panzera & Charles C. Taylor, 2012. "Non-parametric smoothing and prediction for nonlinear circular time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(4), pages 620-630, July.
    12. Nengxiang Ling & Lingyu Wang & Philippe Vieu, 2020. "Convergence rate of kernel regression estimation for time series data when both response and covariate are functional," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 713-732, August.
    13. Davide Buttarazzi & Giuseppe Pandolfo & Giovanni C. Porzio, 2018. "A boxplot for circular data," Biometrics, The International Biometric Society, vol. 74(4), pages 1492-1501, December.
    14. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    15. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    16. Nengxiang Ling & Shuyu Meng & Philippe Vieu, 2019. "Uniform consistency rate of kNN regression estimation for functional time series data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 451-468, April.
    17. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    18. F Ferraty & S NAGY, 2022. "Scalar-on-function local linear regression and beyond [Cross-validated estimations in the single-functional index model]," Biometrika, Biometrika Trust, vol. 109(2), pages 439-455.
    19. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    3. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    4. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
    5. Andrea Meilán-Vila & Mario Francisco-Fernández & Rosa M. Crujeiras & Agnese Panzera, 2021. "Nonparametric multiple regression estimation for circular response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 650-672, September.
    6. Inass Soukarieh & Salim Bouzebda, 2024. "Weak convergence of the conditional U-statistics for locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 27(2), pages 227-304, July.
    7. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    8. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    9. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    11. Smida, Zaineb & Laurent, Thibault & Cucala, Lionel, 2024. "A Hotelling spatial scan statistic for functional data: application to economic and climate data," TSE Working Papers 24-1583, Toulouse School of Economics (TSE).
    12. Goia, Aldo, 2012. "A functional linear model for time series prediction with exogenous variables," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 1005-1011.
    13. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    14. Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
    15. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    16. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order," CeMMAP working papers CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    18. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    19. Aubin, Jean-Baptiste & Bongiorno, Enea G. & Goia, Aldo, 2022. "The correction term in a small-ball probability factorization for random curves," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Charles A. Ogunbode & Rouven Doran & Gisela Böhm, 2020. "Individual and local flooding experiences are differentially associated with subjective attribution and climate change concern," Climatic Change, Springer, vol. 162(4), pages 2243-2255, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01420-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.