IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v27y2024i2d10.1007_s11203-023-09305-y.html
   My bibliography  Save this article

Weak convergence of the conditional U-statistics for locally stationary functional time series

Author

Listed:
  • Inass Soukarieh

    (Université de Technologie de Compiègne)

  • Salim Bouzebda

    (Université de Technologie de Compiègne)

Abstract

In recent years, the direction has turned to non-stationary time series. Here the situation is more complicated: it is often unclear how to set down a meaningful asymptotic for non-stationary processes. For this reason, the theory of locally stationary processes arose, and it is based on infill asymptotics created from non-parametric statistics. The present paper aims to develop a framework for inference of locally stationary functional time series based on the so-called conditional U-statistics introduced by Stute (Ann Probab 19:812–825, 1991), and may be viewed as a generalization of the Nadaraya-Watson regression function estimates. In this paper, we introduce an estimator of the conditional U-statistics operator that takes into account the nonstationary behavior of the data-generating process. We are mainly interested in establishing weak convergence of conditional U-processes in the locally stationary functional mixing data framework. More precisely, we investigate the weak convergence of conditional U-processes when the explicative variable is functional. We treat the weak convergence when the class of functions is bounded or unbounded, satisfying some moment conditions. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The theoretical results established in this paper are (or will be) critical tools for further functional data analysis developments.

Suggested Citation

  • Inass Soukarieh & Salim Bouzebda, 2024. "Weak convergence of the conditional U-statistics for locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 27(2), pages 227-304, July.
  • Handle: RePEc:spr:sistpr:v:27:y:2024:i:2:d:10.1007_s11203-023-09305-y
    DOI: 10.1007/s11203-023-09305-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-023-09305-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-023-09305-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. David Mason, 2012. "Proving consistency of non-standard kernel estimators," Statistical Inference for Stochastic Processes, Springer, vol. 15(2), pages 151-176, July.
    3. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    4. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    5. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    6. Sultana DIDI & Ahoud AL HARBY & Salim BOUZEBDA, 2022. "Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time," Mathematics, MDPI, vol. 10(19), pages 1-33, September.
    7. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    8. Soukarieh, Inass & Bouzebda, Salim, 2023. "Renewal type bootstrap for increasing degree U-process of a Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    9. Liebscher, Eckhard, 1996. "Strong convergence of sums of [alpha]-mixing random variables with applications to density estimation," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 69-80, December.
    10. Sakiyama, Kenji & Taniguchi, Masanobu, 2004. "Discriminant analysis for locally stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 282-300, August.
    11. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.
    12. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    13. Harel, Michel & Puri, Madan L., 1996. "ConditionalU-Statistics for Dependent Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 84-100, April.
    14. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    15. Arcones, Miguel A. & Giné, Evarist, 1995. "On the law of the iterated logarithm for canonical U-statistics and processes," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 217-245, August.
    16. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.
    17. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Jens-Peter Kreiss & Efstathios Paparoditis, 2015. "Bootstrapping locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 267-290, January.
    19. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    20. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
    21. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    22. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    23. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    24. Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
    25. Jun Yang & Zhou Zhou, 2022. "Spectral Inference under Complex Temporal Dynamics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 133-155, January.
    26. Eberlein, Ernst, 1984. "Weak convergence of partial sums of absolutely regular sequences," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 291-293, October.
    27. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.
    28. Jason Abrevaya & Wei Jiang, 2005. "A Nonparametric Approach to Measuring and Testing Curvature," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 1-19, January.
    29. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    30. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    31. Salim Bouzebda & Issam Elhattab & Boutheina Nemouchi, 2021. "On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(2), pages 321-358, April.
    32. Salim Bouzebda & Boutheina Nemouchi, 2020. "Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 452-509, April.
    33. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
    2. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.
    3. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    4. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    5. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    6. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Aubin, Jean-Baptiste & Bongiorno, Enea G. & Goia, Aldo, 2022. "The correction term in a small-ball probability factorization for random curves," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Soukarieh, Inass & Bouzebda, Salim, 2023. "Renewal type bootstrap for increasing degree U-process of a Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    10. Andrea Meilán-Vila & Rosa M. Crujeiras & Mario Francisco-Fernández, 2024. "Nonparametric estimation for a functional-circular regression model," Statistical Papers, Springer, vol. 65(2), pages 945-974, April.
    11. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    12. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    13. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    14. Krampe, J. & Kreiss, J.-P. & Paparoditis, E., 2015. "Hybrid wild bootstrap for nonparametric trend estimation in locally stationary time series," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 54-63.
    15. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    16. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.
    17. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    18. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    19. Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
    20. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:27:y:2024:i:2:d:10.1007_s11203-023-09305-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.