IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v88y2025i2d10.1007_s11235-025-01279-x.html
   My bibliography  Save this article

Underwater communication technologies: a review

Author

Listed:
  • Theocharis Theocharidis

    (University of the Aegean)

  • Ergina Kavallieratou

    (University of the Aegean)

Abstract

This review examines current underwater communication technologies, highlighting the challenges and innovations in applications spanning scientific research, exploration, environmental monitoring, and security. Emphasis is placed on the evolution and interplay of acoustic, optical, quantum, and hybrid communication methods, as well as their respective limitations and potential solutions in the complex underwater environment. The review explores advancements in Autonomous Underwater Vehicles (AUVs), with particular focus on the swarm configuration, which enables dynamic, interconnected networks for real-time data exchange and adaptive responses to environmental changes. Key areas of innovation include the use of new materials, advanced sensor networks, and machine learning algorithms to enhance communication efficiency, security, and resilience under varying underwater conditions. The integration of swarm AUVs and Internet of Things (IoT) concepts is proposed to further expand underwater operational capabilities, making underwater communication systems more reliable, secure, and versatile.

Suggested Citation

  • Theocharis Theocharidis & Ergina Kavallieratou, 2025. "Underwater communication technologies: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 88(2), pages 1-27, June.
  • Handle: RePEc:spr:telsys:v:88:y:2025:i:2:d:10.1007_s11235-025-01279-x
    DOI: 10.1007/s11235-025-01279-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-025-01279-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-025-01279-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Song Ma & Thomas Herbst & Thomas Scheidl & Daqing Wang & Sebastian Kropatschek & William Naylor & Bernhard Wittmann & Alexandra Mech & Johannes Kofler & Elena Anisimova & Vadim Makarov & Thomas J, 2012. "Quantum teleportation over 143 kilometres using active feed-forward," Nature, Nature, vol. 489(7415), pages 269-273, September.
    2. Xin Zhang & Jinhong Wang & Xiaoji Zhang, 2019. "Relay transmission for air-to-undersea magnetic induction communication," Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 33(10), pages 1287-1296, July.
    3. Wang, Guohui & Yang, Yanan & Wang, Shuxin, 2020. "Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review," Applied Energy, Elsevier, vol. 278(C).
    4. Juan Yin & Ji-Gang Ren & He Lu & Yuan Cao & Hai-Lin Yong & Yu-Ping Wu & Chang Liu & Sheng-Kai Liao & Fei Zhou & Yan Jiang & Xin-Dong Cai & Ping Xu & Ge-Sheng Pan & Jian-Jun Jia & Yong-Mei Huang & Hao , 2012. "Quantum teleportation and entanglement distribution over 100-kilometre free-space channels," Nature, Nature, vol. 488(7410), pages 185-188, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchao Ruan & Hang Zhang & Wenqi Peng & Hui Xian & Yiwu Zhu & Wei Zhao & Sha Xiong, 2023. "Free-Space Quantum Teleportation with Orbital Angular Momentum Multiplexed Continuous Variable Entanglement," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    2. Ait Chlih, Anas & Rahman, Atta ur, 2024. "Nonclassicality and teleportation fidelity probes in amplitude-tailored superconducting charge qubits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    4. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
    5. Feng, Jiaqi & Wang, Junpeng & Chen, Zhentao & Li, Yuzhe & Luo, Zhengyuan & Bai, Bofeng, 2024. "Performance advantages of transcritical CO2 cycle in the marine environment," Energy, Elsevier, vol. 305(C).
    6. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.
    7. Ouro-Koura, Habilou & Jung, Hyunjun & Li, Jinglun & Borca-Tasciuc, Diana-Andra & Copping, Andrea E. & Deng, Zhiqun Daniel, 2024. "Predictive model using artificial neural network to design phase change material-based ocean thermal energy harvesting systems for powering uncrewed underwater vehicles," Energy, Elsevier, vol. 301(C).
    8. Jia-Qi Wang & Yuan-Hao Yang & Ming Li & Haiqi Zhou & Xin-Biao Xu & Ji-Zhe Zhang & Chun-Hua Dong & Guang-Can Guo & C.-L. Zou, 2022. "Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Feng, Jiaqi & Zhang, Enbo & Bai, Bofeng, 2024. "Dynamic modeling and response characteristics of closed CO2 cycle with Li/SF6 fuel boiler to external disturbances," Energy, Elsevier, vol. 312(C).
    10. Rong Hu & Zhongying Wu & Yong Xu & Taotao Lai, 2022. "Vehicular-Network-Intrusion Detection Based on a Mosaic-Coded Convolutional Neural Network," Mathematics, MDPI, vol. 10(12), pages 1-21, June.
    11. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    12. Sebastian Philipp Neumann & Alexander Buchner & Lukas Bulla & Martin Bohmann & Rupert Ursin, 2022. "Continuous entanglement distribution over a transnational 248 km fiber link," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Arias, Francisco J., 2023. "The thermodynamic limit of extractable kinetic energy buoyancy engine," Applied Energy, Elsevier, vol. 350(C).
    14. Chen, Bingzhe & Yang, Canjun & Yao, Zesheng & Xia, Qingchao & Chen, Yanhu, 2024. "Research on coupling enhanced heat transfer with energy storage in ocean thermal engine systems," Applied Energy, Elsevier, vol. 360(C).
    15. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Xiao Wu & Xiangnan Wang & Bingzhen Wang, 2023. "Test and Analysis of the Heat Exchanger for Small Ocean Thermal Energy Power Generation Devices," Energies, MDPI, vol. 16(22), pages 1-14, November.
    17. Yan, Peiliang & Fan, Weijun & Yang, Yan & Ding, Hongbing & Arshad, Adeel & Wen, Chuang, 2022. "Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations," Applied Energy, Elsevier, vol. 327(C).
    18. Jung, Hyunjun & Subban, Chinmayee V. & McTigue, Joshua Dominic & Martinez, Jayson J. & Copping, Andrea E. & Osorio, Julian & Liu, Jian & Deng, Z. Daniel, 2022. "Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:88:y:2025:i:2:d:10.1007_s11235-025-01279-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.