IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i9d10.1007_s00362-024-01594-6.html
   My bibliography  Save this article

Communication-efficient distributed EM algorithm

Author

Listed:
  • Xirui Liu

    (Beijing University of Technology)

  • Mixia Wu

    (Beijing University of Technology)

  • Liwen Xu

    (North China University of Technology)

Abstract

The Expectation Maximization (EM) algorithm is widely used in latent variable model inference. However, when data are distributed across various locations, directly applying the EM algorithm can often be impractical due to communication expenses and privacy considerations. To address these challenges, a communication-efficient distributed EM algorithm is proposed. Under mild conditions, the proposed estimator achieves the same mean squared error bound as the centralized estimator. Furthermore, the proposed method requires only one extra round of communication compared to the Average estimator. Numerical simulations and a real data example demonstrate that the proposed estimator significantly outperforms the Average estimator in terms of mean squared errors.

Suggested Citation

  • Xirui Liu & Mixia Wu & Liwen Xu, 2024. "Communication-efficient distributed EM algorithm," Statistical Papers, Springer, vol. 65(9), pages 5575-5592, December.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01594-6
    DOI: 10.1007/s00362-024-01594-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01594-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01594-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    2. Cheng Li & Sanvesh Srivastava & David B. Dunson, 2017. "Simple, scalable and accurate posterior interval estimation," Biometrika, Biometrika Trust, vol. 104(3), pages 665-680.
    3. Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cremaschini, Alessandro & Maruotti, Antonello, 2023. "A finite mixture analysis of structural breaks in the G-7 gross domestic product series," Research in Economics, Elsevier, vol. 77(1), pages 76-90.
    2. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    3. François Bavaud, 2009. "Aggregation invariance in general clustering approaches," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 205-225, December.
    4. Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," 2018 Meeting Papers 469, Society for Economic Dynamics.
    5. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    6. Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
    7. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    8. repec:osf:osfxxx:p8zk9_v1 is not listed on IDEAS
    9. M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
    10. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    11. repec:jss:jstsof:28:i04 is not listed on IDEAS
    12. Víctor H. Lachos & Celso R. B. Cabral & Marcos O. Prates & Dipak K. Dey, 2019. "Flexible regression modeling for censored data based on mixtures of student-t distributions," Computational Statistics, Springer, vol. 34(1), pages 123-152, March.
    13. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Nicolas Jouvin & Pierre Latouche & Charles Bouveyron & Guillaume Bataillon & Alain Livartowski, 2021. "Greedy clustering of count data through a mixture of multinomial PCA," Computational Statistics, Springer, vol. 36(1), pages 1-33, March.
    15. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    16. Same, Allou & Ambroise, Christophe & Govaert, Gerard, 2006. "A classification EM algorithm for binned data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 466-480, November.
    17. Yves Grandvalet & Yoshua Bengio, 2004. "Learning from Partial Labels with Minimum Entropy," CIRANO Working Papers 2004s-28, CIRANO.
    18. Sainan Xu & Jing Lu & Jiwei Zhang & Chun Wang & Gongjun Xu, 2024. "Optimizing Large-Scale Educational Assessment with a “Divide-and-Conquer” Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 89(4), pages 1119-1147, December.
    19. Frei, Marco & Künsch, Hans R., 2013. "Mixture ensemble Kalman filters," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 127-138.
    20. Guan-Hua Huang & Su-Mei Wang & Chung-Chu Hsu, 2011. "Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 584-611, October.
    21. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    22. Rasmus Lentz & Suphanit Piyapromdee & Jean-Marc Robin, 2022. "The Anatomy of Sorting - Evidence from Danish Data," Working Papers hal-03869383, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01594-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.