IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i2d10.1007_s00362-023-01414-3.html
   My bibliography  Save this article

Parameters not empirically identifiable or distinguishable, including correlation between Gaussian observations

Author

Listed:
  • Christian Hennig

    (University of Bologna)

Abstract

It is shown that some theoretically identifiable parameters cannot be empirically identified, meaning that no consistent estimator of them can exist. An important example is a constant correlation between Gaussian observations (in presence of such correlation not even the mean can be empirically identified). Empirical identifiability and three versions of empirical distinguishability are defined. Two different constant correlations between Gaussian observations cannot even be empirically distinguished. A further example are cluster membership parameters in k-means clustering. Several existing results in the literature are connected to the new framework. General conditions are discussed under which independence can be distinguished from dependence.

Suggested Citation

  • Christian Hennig, 2024. "Parameters not empirically identifiable or distinguishable, including correlation between Gaussian observations," Statistical Papers, Springer, vol. 65(2), pages 771-794, April.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01414-3
    DOI: 10.1007/s00362-023-01414-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01414-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01414-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    2. Peter Bryant, 1991. "Large-sample results for optimization-based clustering methods," Journal of Classification, Springer;The Classification Society, vol. 8(1), pages 31-44, January.
    3. Carlos Almeida & Michel Mouchart, 2014. "Testing normality of latent variables in the polychoric correlation," Statistica, Department of Statistics, University of Bologna, vol. 74(1), pages 3-22.
    4. Almeida Rodriguez, Carlos & Mouchart, Michel, 2014. "Testing Normality of latent variables in the polychoric correlation," LIDAM Reprints ISBA 2014046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Bock, Hans H., 1996. "Probabilistic models in cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 5-28, November.
    6. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    7. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    3. Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
    4. Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.
    5. Hernández-Cedeño, Isaac & Nelson, Pamela F. & Anglés-Hernández, Marisol, 2021. "Social and environmental conflict analysis on energy projects: Bayesian predictive network approach," Energy Policy, Elsevier, vol. 157(C).
    6. Ernesto Martín & Jorge González & Francis Tuerlinckx, 2015. "On the Unidentifiability of the Fixed-Effects 3PL Model," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 450-467, June.
    7. Cho, Seo-young & Vadlamannati, Krishna Chaitanya, 2010. "Compliance for big brothers: An empirical analysis on the impact of the anti-trafficking protocol," University of Göttingen Working Papers in Economics 118, University of Goettingen, Department of Economics.
    8. Yekun Qin & Shanminhui Yin & Fang Liu, 2024. "RETRACTED ARTICLE: Navigating Criminal Responsibility in the Digital Marketplace: Implications of Network-Neutral Help Behavior and Beyond-5G Networks in E-Commerce Transactions," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10667-10695, September.
    9. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    10. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    11. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    12. Le, Huyen T.K. & Buehler, Ralph & Fan, Yingling & Hankey, Steve, 2020. "Expanding the positive utility of travel through weeklong tracking: Within-person and multi-environment variability of ideal travel time," Journal of Transport Geography, Elsevier, vol. 84(C).
    13. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    14. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    15. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    16. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    17. Neusser, Klaus, 2016. "A topological view on the identification of structural vector autoregressions," Economics Letters, Elsevier, vol. 144(C), pages 107-111.
    18. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2020. "Estimating the Production Function for Human Capital: Results from a Randomized Controlled Trial in Colombia," American Economic Review, American Economic Association, vol. 110(1), pages 48-85, January.
    19. Chrysanthos Dellarocas & Charles A. Wood, 2008. "The Sound of Silence in Online Feedback: Estimating Trading Risks in the Presence of Reporting Bias," Management Science, INFORMS, vol. 54(3), pages 460-476, March.
    20. Trottmann, Maria & Zweifel, Peter & Beck, Konstantin, 2012. "Supply-side and demand-side cost sharing in deregulated social health insurance: Which is more effective?," Journal of Health Economics, Elsevier, vol. 31(1), pages 231-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01414-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.