IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i1d10.1007_s00362-022-01388-8.html
   My bibliography  Save this article

On the distribution of sample scale-free scatter matrices

Author

Listed:
  • A. M. Mathai

    (McGill University)

  • Serge B. Provost

    (The University of Western Ontario)

Abstract

This paper addresses certain distributional aspects of a scale-free scatter matrix denoted by R that is stemming from a matrix-variate gamma distribution having a positive definite scale parameter matrix B. Under the assumption that B is a diagonal matrix, a structural representation of the determinant of R is derived; the exact density functions of products and ratios of determinants of matrices possessing such a structure are obtained; a closed form expression is given for the density function of R. Moreover, a novel procedure is utilized to establish that certain functions of the determinant of the sample scatter matrix are asymptotically distributed as chi-square or normal random variables. Then, representations of the density function of R that respectively involve multiple integrals, multiple series and Gauss’ hypergeometric function are provided for the general case of a positive definite scale parameter matrix, and an illustrative numerical example is presented. Cutting-edge mathematical techniques have been employed to derive the results. Naturally, they also apply to the conventional sample correlation matrix which is encountered in various multivariate inference contexts.

Suggested Citation

  • A. M. Mathai & Serge B. Provost, 2024. "On the distribution of sample scale-free scatter matrices," Statistical Papers, Springer, vol. 65(1), pages 121-138, February.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:1:d:10.1007_s00362-022-01388-8
    DOI: 10.1007/s00362-022-01388-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01388-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01388-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kollo, T. & Neudecker, H., 1993. "Asymptotics of Eigenvalues and Unit-Length Eigenvectors of Sample Variance and Correlation Matrices," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 283-300, November.
    2. Taniguchi, M. & Krishnaiah, P. R., 1987. "Asymptotic distributions of functions of the eigenvalues of sample covariance matrix and canonical correlation matrix in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 156-176, June.
    3. Fang, C. & Krishnaiah, P. R., 1982. "Asymptotic distributions of functions of the eigenvalues of some random matrices for nonnormal populations," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 39-63, March.
    4. Heiny, Johannes & Mikosch, Thomas, 2018. "Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2779-2815.
    5. Kollo, Tõnu & Ruul, Kaire, 2003. "Approximations to the distribution of the sample correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 318-334, May.
    6. Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boik, Robert J., 1998. "A Local Parameterization of Orthogonal and Semi-Orthogonal Matrices with Applications," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 244-276, November.
    2. Gusakova, Anna & Heiny, Johannes & Thäle, Christoph, 2023. "The volume of random simplices from elliptical distributions in high dimension," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 357-382.
    3. Choi, Jungjun & Yang, Xiye, 2022. "Asymptotic properties of correlation-based principal component analysis," Journal of Econometrics, Elsevier, vol. 229(1), pages 1-18.
    4. Chen, Dachuan, 2024. "High frequency principal component analysis based on correlation matrix that is robust to jumps, microstructure noise and asynchronous observation times," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    7. Masanobu Taniguchi & Madan Puri, 1995. "Higher order asymptotic theory for normalizing transformations of maximum likelihood estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 581-600, September.
    8. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    9. Xinyu Zhang & Howell Tong, 2022. "Asymptotic theory of principal component analysis for time series data with cautionary comments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 543-565, April.
    10. Yan Liu & Masanobu Taniguchi, 2021. "Minimax estimation for time series models," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 353-359, December.
    11. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    12. Rostyslav Bodnar & Taras Bodnar & Wolfgang Schmid, 2023. "Sequential monitoring of high‐dimensional time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 962-992, September.
    13. Wang, Li & Zhou, Hongyi & Ma, Weidong & Yang, Ying, 2025. "A conditional distribution function-based measure for independence and K-sample tests in multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    14. Ogasawara, Haruhiko, 2007. "Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1726-1750, October.
    15. Bauer, Jan O. & Drabant, Bernhard, 2023. "Regression based thresholds in principal loading analysis," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    16. Neudecker, Heinz & Satorra, Albert, 1996. "The algebraic equality of two asymptotic tests for the hypothesis that a normal distribution has a specified correlation matrix," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 99-103, October.
    17. Edward J. Bedrick, 2020. "Data reduction prior to inference: Are there consequences of comparing groups using a t‐test based on principal component scores?," Biometrics, The International Biometric Society, vol. 76(2), pages 508-517, June.
    18. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    19. Aaron Fisher & Brian Caffo & Brian Schwartz & Vadim Zipunnikov, 2016. "Fast, Exact Bootstrap Principal Component Analysis for > 1 Million," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 846-860, April.
    20. Di Nardo, Elvira, 2014. "On a symbolic representation of non-central Wishart random matrices with applications," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 121-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:1:d:10.1007_s00362-022-01388-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.