Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-022-01348-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Srivastava, Muni S. & Reid, N., 2012. "Testing the structure of the covariance matrix with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 156-171.
- James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
- Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
- Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
- Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
- Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
- Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
- Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
- Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
- Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
- Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
- Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
- Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Peng, Hanxiang & Schick, Anton, 2018. "Asymptotic normality of quadratic forms with random vectors of increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 22-39.
- Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
- Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
- Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
- Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
- Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023.
"Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?,"
Finance Research Letters, Elsevier, vol. 54(C).
- Taras Bodnar & Nestor Parolya & Erik Thors'en, 2021. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Papers 2111.12532, arXiv.org.
- Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
- Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
More about this item
Keywords
Likelihood ratio test; Normal random vector; Central limit theorem; Chi-square approximation; Non-normal limit; High dimension; Independence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:3:d:10.1007_s00362-022-01348-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.